Relational morphisms and operations on recognizable sets

Howard Straubing

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1981)

  • Volume: 15, Issue: 2, page 149-159
  • ISSN: 0988-3754

How to cite

top

Straubing, Howard. "Relational morphisms and operations on recognizable sets." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 15.2 (1981): 149-159. <http://eudml.org/doc/92139>.

@article{Straubing1981,
author = {Straubing, Howard},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {syntactic monoids; recognizable sets; recognizable languages; aperiodic relational morphism; pure submonoid; variety of languages},
language = {eng},
number = {2},
pages = {149-159},
publisher = {EDP-Sciences},
title = {Relational morphisms and operations on recognizable sets},
url = {http://eudml.org/doc/92139},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Straubing, Howard
TI - Relational morphisms and operations on recognizable sets
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1981
PB - EDP-Sciences
VL - 15
IS - 2
SP - 149
EP - 159
LA - eng
KW - syntactic monoids; recognizable sets; recognizable languages; aperiodic relational morphism; pure submonoid; variety of languages
UR - http://eudml.org/doc/92139
ER -

References

top
  1. 1. S. EILENBERG, Automata, Languages and Machines, Vol. B., Academic Press, New York, 1976. Zbl0359.94067MR530383
  2. 2. J. F. PERROT, On the Theory of Syntactic Monoids for Rational Languages, in Fundamentals of Computation Theory, Lecture Notes in Computer Science, No. 56, Springer, 1977, pp. 152-165. Zbl0374.94010MR486262
  3. 3. J. F. PERROT, Variétés des langages et opérations, Theoretical Computer Science, Vol. 7, 1978, pp. 198-210. Zbl0398.68035MR509017
  4. 4. J. E. PIN, Sur le monoïde syntactique de L* lorsque L est un langage fini, Theoretical Computer Science, Vol. 7, 1978, pp. 211-215. Zbl0388.20050MR509018
  5. 5. J. E. PIN, Variétés de langages et monoïde des parties, to appear in Semigroup Forum. Zbl0451.20061MR572533
  6. 6. A. RESTIVO, Codes and Aperiodic Languages, in Fachtagung übër Automatentheorie und formale Sprachen, Lecture Notes in Computer Science, No. 2, Springer, 1973, pp. 175-181. Zbl0277.68039MR434009
  7. 7. C. REUTENAUER, Sur les variétés de langages et de monoïdes, 4th G. I. Conference, Lecture Notes in Computer Science, No. 67, Springer, 1979, pp. 260-265. Zbl0411.68066MR568110
  8. 8. M. P. SCHÜTZENBERGER, On Finite Monoids Having Only Trivial Subgroups, Information and Control, Vol. 8, 1965, pp. 190-194. Zbl0131.02001MR176883
  9. 9. M. P. SCHÜTZENBERGER, Sur le produit de concatenation non ambigu, Semigroup Forum, Vol. 13, 1976, pp. 47-75. Zbl0373.20059MR444824
  10. 10. H. STRAUBING, Aperiodic Homomorphisms and The Concatenation Product of Recognizable Sets, J. Pure and Applied Algebra, Vol. 15, 1979, pp. 319-327. Zbl0407.20056MR537504
  11. 11. H. STRAUBING, A Generalization of the Schützenberger Product of Finite Monoids, to appear in Theoretical Computer Science, Vol. 12, 1980. Zbl0456.20048MR594057
  12. 12. H. STRAUBING, Recognizable Sets and Power Sets of Finite Semigroups, Semigroup Forum, Vol. 18, 1979, pp. 331-340. Zbl0433.20045MR552376
  13. 13. B. TILSON, Chapter XII in Reference [1]. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.