The monadic second-order logic of graphs III : tree-decompositions, minors and complexity issues

B. Courcelle

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1992)

  • Volume: 26, Issue: 3, page 257-286
  • ISSN: 0988-3754

How to cite

top

Courcelle, B.. "The monadic second-order logic of graphs III : tree-decompositions, minors and complexity issues." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 26.3 (1992): 257-286. <http://eudml.org/doc/92418>.

@article{Courcelle1992,
author = {Courcelle, B.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {graphs; hypergraphs; formal language; tree-decompositions; monadic second-order logic; minors; quadratic algorithms},
language = {eng},
number = {3},
pages = {257-286},
publisher = {EDP-Sciences},
title = {The monadic second-order logic of graphs III : tree-decompositions, minors and complexity issues},
url = {http://eudml.org/doc/92418},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Courcelle, B.
TI - The monadic second-order logic of graphs III : tree-decompositions, minors and complexity issues
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 3
SP - 257
EP - 286
LA - eng
KW - graphs; hypergraphs; formal language; tree-decompositions; monadic second-order logic; minors; quadratic algorithms
UR - http://eudml.org/doc/92418
ER -

References

top
  1. 1. S. ARNBORG, D. CORNEIL and A. PROSKUROWSKI, Complexity of finding an embedding in a k-tree, S.I.A.M. J. Alg. Disc. Methods, 1987, 8, pp. 277-284. Zbl0611.05022MR881187
  2. 2. S. ARNBORG, B. COURCELLE, A. PROSKUROWSKI and D. SEESE, An algebraic theory of graph reduction, Report 90-02, Bordeaux-I University, 1990. Short version in L.N.C.S., 532, 1991, pp. 70-83. Zbl0765.68062MR1431274
  3. 3. S. ARNBORG, J. LAGERGREN et D. SEESE, Easy problems for tree decomposable graphs, J. Algorithms, 1991, 12, pp. 308-340. Zbl0734.68073MR1105479
  4. 4. S. ARNBORG and A. PROSKUROWSKI, Characterization and recognition of partial 3-trees, S.I.A.M. J. Alg. Disc. Meth., 1986, 7, pp. 305-314. Zbl0597.05027MR830649
  5. 5. S. ARNBORG A. PROSKUROWSKI and D. CORNEIL, Forbidden minors characterization of partial 3-trees, Discrete Math., 1990, 80, pp. 1-19. Zbl0701.05016MR1045920
  6. 6. M. BAUDERON, Infinite hypergraphs, I, Basic proporties, Theoret. Comput. Sci., 1991, 82, pp. 177-214. Zbl0758.05069MR1112768
  7. 7. M. BAUDERON and B. COURCELLE, Graph expressions and graph rewritings, Math. System Theory, 1987, 29, pp. 83-127. Zbl0641.68115MR920770
  8. 8. H. BODLAENDER, Classes of graphs wïth bounded tree-width, Report RUU-CS-86-22, University of Utrecht, The Netherlands, 1986. 
  9. 9. H. BODLAENDER, Polynomial algorithms for Chromatic Index and Graph Isomorphism on partial k-trees, Proc. First Scandinavian Workshop on Algorithm theory, 1988, Lecture Notes in Comput. Sci., 318, pp. 223-232. Zbl0651.68079MR1019374
  10. 10. H. BODLAENDER, Dynamic programming on graphs with bounded tree width, Proceedings of ICALP'88, Tampere, Finland, L.N.C.S, 317, 1988, pp. 105-118. Zbl0649.68039MR1023630
  11. 11. H. BODLAENDER, Improved self-reduction algorithms for graphs with bounded tree-width, Proceedings of WG'89, Lecture Notes in Comput. Sci., 1990, 411, pp. 232-244. Zbl0768.68033MR1063946
  12. 12. B. COURCELLE, An axiomatic definition of eontext-free rewriting and its application to NLC graph grammars, Theoret. Comput. Sci., 1987, 55, pp. 141-181. Zbl0644.68095MR932445
  13. 13. B. COURCELLE, The monadic second-order theory of graphs I: Recognizable sets of finite graphs. Inform. and Comput. 1990, 85, pp. 12-75. Zbl0722.03008MR1042649
  14. 14. B. COURCELLE, The monadic second-order logie of graphs II: Infinite graphs of bounded with, Math. Systems Theory, 1989, 21, pp. 187-221. Zbl0694.68043MR987150
  15. 15. B. COURCELLE, The monadic second-order logic of graphs IV, Definability results for equational graphs, Ann. Pure Appl. Logic, 1990, 49, pp. 193-255. Zbl0731.03006MR1077259
  16. 16. B. COURCELLE, The monadic second-order logic of graphs VI: On several representations of graphs by logical structures, Research report 89-99, Bordeaux I-University. Discrete Appl. Math. (in press). (See also Logic in Comput. Sci., 1990. Philadelphia). Zbl0809.03005
  17. 17. B. COURCELLE, Graph rewriting: an algebraic and logic approach, in Handbook of Theoretical computer Science, vol. B, J. VAN LEEUWEN Ed. 1990, Elsevier, pp. 193-242. Zbl0900.68282
  18. 18. B. COURCELLE and M. MOSBAH, Monadic second-order evaluations on tree-decomposable graphs, Rapport 90-110, Bordeaux-I, University, 1990. Theor. Comput. Sci., (to appear). Zbl0789.68083
  19. 19. M. FELLOWS and M. LANGSTON, On Search, decision and the efficiency of polynomial-time algorithms, A.C.M. Symp. on Theory of Computing 1989, pp. 501-512. 
  20. 20. M. FELLOWS and M. LANGSTON, An analogue of the Myhill-Nerode Theorem and its use in computing finite-basis characterization, 30th Annual I.E.E.E. Symp. on Foundations of Computer Science, 1989, pp. 520-525. 
  21. 21. A. HABEL, Hyperedge replacement: grammars and languages, Doctoral dissertation, University of Bremen 1989. 
  22. 22. A. HABEL and H. J. KREOWSKI, May we introduce to you: hyperedge replacement, L.N.C.S., 1987, 291, pp. 15-26. Zbl0643.68106
  23. 23. C. LAUTEMANN, Efficient algorithms on context-free graph languages, ICALP'88, Tampere, Finland, L.N.C.S., 1987, 317, pp. 362-378. Zbl0649.68075
  24. 24. J. LEUNG, J. WITTHOF and O. VORNBERGER, On some variations on the bandwidth minization problem, S.I.A.M. J. Comput., 1984, 13, pp. 650-667. Zbl0545.68058
  25. 25. N. ROBERTSON and P. SEYMOUR, Some new results on the well-quasi-ordering of graphs, Ann. Discrete Math., 1984, 23, pp. 343-354. Zbl0556.05058
  26. 26. N. ROBERTSON and P. SEYMOUR, Graph Minors IV, Tree-width and well quasiordering, J. Combin. Theory, Ser. B. 48, 1990, pp. 227-254. Zbl0719.05032MR1046757
  27. 27. N. ROBERTSON and P. SEYMOUR, Graph Minors V, excluding a planar graph, J. Combin. Theory, Ser. B., 1986, 41, pp. 92-114. Zbl0598.05055MR854606
  28. 28. N. ROBERTSON and P. SEYMOUR, Graph Minors X, Obstructions to tree-decomposition, Revised version, Feb. 1988. 
  29. 29. N. ROBERTSON and P. SEYMOUR, Graph Minors XIII, The disjoint paths problem, Preprint, September 1986. Zbl0823.05038MR1309358
  30. 30. N. ROBERTSON and P. SEYMOUR, Graph Minors XV, Wagner's conjecture, Revised version, March 1988. 
  31. 31. D. SEESE, Ein Unentscheidbarkeitskreiterium, Wiss. Z. der Humbold Univ. Zu Berlin Math. Natur. Wiss., R24, 1975, pp. 772-780. Zbl0331.02026
  32. 32. D. SEESE, The structure of the models of decidable monadic theories of graphs. Ann. Pure and Appl. Logic, 1991, 53, pp. 169-195. Zbl0733.03026MR1114848
  33. 33. J. VAN LEEUWEN, Graph algorithms, Handbook of Theoretical Computer Science, volume A", J. VAN LEEUWEN Ed., 1990, Elsevier, pp. 523-631. Zbl0900.68258MR1127176
  34. 34. W. VOGLER, Recognizing edge replacement graphs languages in cubic time, Proceedings of the 4th Int. Workshop on Graph Grammars, Bremen 1990, L.N.C.S., 532, 1991, pp. 676-687. Zbl0769.68078MR1431296
  35. 35. K. WAGNER, Ueber eine Eigenshaft der ebenen Komplexe, Math. Ann., 1937, 114, pp. 570-590. Zbl0017.19005MR1513158
  36. 36. J. WALD and C. COLBOURN, Steiner trees, partial 2-trees, and IFI networks, Networks, 1983,13, pp. 159-167. Zbl0529.68036MR706489
  37. 37. J. LAGERGREN and S. ARNBORG, Finding minimal forbiden minors using a finite congruence, L.N.C.S. 510, 1991, pp. 532-543. Zbl0764.68122MR1129933

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.