Paramétrix et propagation des singularités pour un problème de Cauchy à multiplicité variable

Serge Alinhac

Journées équations aux dérivées partielles (1975)

  • Volume: 34-35, page 3-26
  • ISSN: 0752-0360

How to cite

top

Alinhac, Serge. "Paramétrix et propagation des singularités pour un problème de Cauchy à multiplicité variable." Journées équations aux dérivées partielles 34-35 (1975): 3-26. <http://eudml.org/doc/92955>.

@article{Alinhac1975,
author = {Alinhac, Serge},
journal = {Journées équations aux dérivées partielles},
language = {fre},
pages = {3-26},
publisher = {Ecole polytechnique},
title = {Paramétrix et propagation des singularités pour un problème de Cauchy à multiplicité variable},
url = {http://eudml.org/doc/92955},
volume = {34-35},
year = {1975},
}

TY - JOUR
AU - Alinhac, Serge
TI - Paramétrix et propagation des singularités pour un problème de Cauchy à multiplicité variable
JO - Journées équations aux dérivées partielles
PY - 1975
PB - Ecole polytechnique
VL - 34-35
SP - 3
EP - 26
LA - fre
UR - http://eudml.org/doc/92955
ER -

References

top
  1. [1] ALINHAC S. — Problèmes de Cauchy pour des opérateurs singuliers. Bulletin de la S.M.F., 102, 1974. Zbl0303.35021MR57 #17008
  2. [2] BAOUENDI M.S. et GOULAOUIC C. — Cauchy problèms with caracteristic initial hypersuface. Comm. on Pure and Applied Math. Zbl0256.35050
  3. [3] BEREZIN J.S. — On Cauchy's problem for linear equ. of the second order with initial cond. on a parabolic line. Mat. Sb. vol. 24, 1949. Zbl0037.06902
  4. [4] BERS L. — Mathematical aspects of Subsouic and transonic Gas Dynamics, John Wiley and Sons, New-York, 1958. Zbl0083.20501
  5. [5] BITSADZE A.V. — Equations of mixte type — Akad. Naud SSSR, 1959. 
  6. [6] GELLERSTEDT S. — Sur une équation linéaire aux dérivées partielles de type mixte, Arkiv. Mat. Astr. Fysik. Vol. 25A, 1937, n° 29. Zbl0016.21203JFM63.1056.03
  7. [7] HÖRMANDER L. — Fourier integral operators I, Acta Mathematica, 127, 1971. Zbl0212.46601MR52 #9299
  8. [8] HSIEH P.A et SIBUYA Y. — On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients, J. Math.Anal. Appl. vol. 16, 1966. Zbl0161.05803MR34 #403
  9. [9] IVRY V — Dokladi Akad. Naud. SSSR vol. 197, 1971. 
  10. [10] IVRY V et PIETKOV V. — Uspehi Mat. Nauk. 29,5, (1974). 
  11. [11] LAX P.D — Duke Math. J. 24 n° 4, 1957. Zbl0083.31801MR20 #4096
  12. [12] LYNN R.Y.S et KELLER J.B. — Comm. on Pure and Applied Math. 23, 1970. Zbl0194.12202MR41 #5719
  13. [13] NERSESIAN A.B — On the Cauchy Problem for degenerating hyperbolic second order equations, Dokladi Akad. Nauk. SSSR, vol. 166, n° 6, 1966. Zbl0149.30702
  14. [14] OLÉINIK O.A. — Cauchy Problem for weakly hyperbolic equations, Comm. on Pure and Appl. Math., 23, n° 4, 1970. MR41 #8823
  15. [15] PROTTER M.H. — The Cauchy problem for hyperbolic second order equation with data on the parabolic line. Canadian J. of Math. vol. 6, 1954. Zbl0057.08101MR16,255d
  16. [16] SIBUYA Y. — Subdominant solutions of the differential equation y - λ²(x - a1) - (x - am) y = 0. Acta Math. vol. 119, 1967. Zbl0159.11601MR37 #529
  17. [17] TRICOMI F. — Sulle equazioni lineari allederivate partiali di 2è ordine di tipo misto, Att. Accad. Naz. Luicie vol. 14, 1923. JFM49.0346.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.