Problèmes de Cauchy et ondes non linéaires
Journées équations aux dérivées partielles (1986)
- page 1-29
- ISSN: 0752-0360
Access Full Article
topHow to cite
topMétivier, Guy. "Problèmes de Cauchy et ondes non linéaires." Journées équations aux dérivées partielles (1986): 1-29. <http://eudml.org/doc/93135>.
@article{Métivier1986,
author = {Métivier, Guy},
journal = {Journées équations aux dérivées partielles},
keywords = {waves; singular surface; Cauchy problem; semilinear; shocks},
language = {fre},
pages = {1-29},
publisher = {Ecole polytechnique},
title = {Problèmes de Cauchy et ondes non linéaires},
url = {http://eudml.org/doc/93135},
year = {1986},
}
TY - JOUR
AU - Métivier, Guy
TI - Problèmes de Cauchy et ondes non linéaires
JO - Journées équations aux dérivées partielles
PY - 1986
PB - Ecole polytechnique
SP - 1
EP - 29
LA - fre
KW - waves; singular surface; Cauchy problem; semilinear; shocks
UR - http://eudml.org/doc/93135
ER -
References
top- [1] S. ALINHAC : Evolution d'une onde simple pour des équations non linéaires générales. Zbl0586.35005
- [2] S. ALINHAC : Interaction d'ondes simples pour des équations complètement non linéaires. Zbl0608.35041
- [3] M. BEALS - G. METIVIER : Progressing wave solution to certain non linear mixed problem ; Duke Math. J. (to appear). Zbl0613.35050
- [4] M. BEALS - G. METIVIER : Reflexion of transversal progressing waves in non linear strictly hyperbolic mixed problems ; Amer. J. Math (to appear). Zbl0633.35051
- [5] J. BERNING - M. REED : Reflection of singularities of one dimensional semilinear wave equations at boundanes ; J. Math. Anal. Appl. 72 (1979) pp 635-653. Zbl0435.35055MR81e:35084
- [6] J. M. BONY : Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires ; Ann. Sc. de l'Ecole Norm. Sup. 14 (1981) pp 209-246. Zbl0495.35024MR84h:35177
- [7] J. M. BONY : Interaction des singularités pour les équations aux dérivées partielles non linéaires ; Séminaire Goulaouic - Meyer - Schwartz, Ecole polytechnique ; Exposé n° 22 (1979-1980) et exposé n° 2 (1981-1982). Zbl0449.35006
- [8] J. M. BONY : Propagation et intéraction des singularités pour les solutions des équations aux dérivées partielles non linéaires ; Proc. Int. Conq. Math., Warszawa, (1983) pp 1133-1147. Zbl0573.35014MR87f:35156
- [9] J. M. BONY : Interaction des singularités pour les équations de Klein - Gordon non linéaires ; Séminaire Goulaouic - Meyer - Schwartz, Ecole polytechnique ; exposé n° 10 (1983-1984). Zbl0555.35118
- [10] J. M. BONY : Second microlocalization and propagation of singularities for semilinear hyperbolic equations ; Zbl0669.35073
- [11] J. CHAZARAIN - A. PIRIOU : Introduction à la théorie des équations aux dérivées partielles ; Gauthier Villars, Paris (1981). Zbl0446.35001MR82i:35001
- [12] R. COURANT - K.O. FRIEDRICHS : Supersonic Flow and Shock Waves ; Springer Verlag, New York 1949.
- [13] R. COURANT - D. HILBERT : Methods of Mathematical Physics, Wiley - Inter-science, New York 1962. Zbl0099.29504
- [14] R. DI PERNA : Uniquencess of solutions of hyperbolic conservation Paws ; Indiana V. Math. J. 28 (1979), pp 137-187. Zbl0409.35057MR80i:35119
- [15] K. O. FRIEDRICHS : Symmetric hyperbolic linear differential equations ; Comm. Pure Appl ; Math. 7 (1954) pp 345-392. Zbl0059.08902MR16,44c
- [16] J. GLIMM : Solutions in the large for non linear hyperbolic systems of equations ; Comm. Pure Appl. Math. 18 (1965) pp 95-105. Zbl0141.28902MR33 #2976
- [17] F. JOHN : Formation of singularities in one dimensional non linear wave propagation ; Comm. Pure Appl Math, 27 (1974) pp 377-405. Zbl0302.35064MR51 #6163
- [18] T. KATO : The Cauchy problem for quasilinear symmetric hyperbolic systems ; Arch. Rat. Mech. Anal. 58 (1975). Zbl0343.35056MR52 #11341
- [19] H. O. KREISS : Initial boundary value Problems for hyperbolic systems ; Comm. Pure Appl. Math, 23 (1970) pp 277-298. Zbl0188.41102MR55 #10862
- [20] P. D. LAX : Hyperbolic systems of conservation laws II ; Comm. Pure Appl. Math, 10 (1957), pp 537-566. Zbl0081.08803MR20 #176
- [21] P. D. LAX : Schock waves and entropy ; Contributions to non linear functional Analysis ; (E. A. Zarantonello Ed) Academic Press, New York (1971).
- [22] A. MAJDA : The stability of multidimensional schock fronts ; Mem. Amer Math. Soc, n° 275 (1983). Zbl0506.76075
- [23] A. MAJDA : The existence of multidimensional schock fronts ; Mem. Amer Math. Soc, n° 281 (1983). Zbl0517.76068
- [24] A. MAJDA : Compressible fluid flow and systems of conservation laws in several space variables ; Applied Math. Sc, 53, Springer verlag (1984). Zbl0537.76001MR85e:35077
- [25] A. MAJDA - S. OSHER : Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary ; Comm. Pure Appl. Math, 28 (1975) pp 607-676. Zbl0314.35061MR53 #13857
- [26] A. MAJDA - R. ROSALES : A theory for the spontaneous formation of Mach stems in reading shock fronts ; I the basic perturbation analysis ; SIAM J. Appl. Math (1984) pp 117-148. Zbl0584.76075MR86b:35133
- [27] R. MELROSE - N. RITTER : Interaction of non linear progressing waves for semilinear wave equations ; Ann Math, 121 (1985) pp 187-213. Zbl0575.35063MR86m:35005
- [28] R. MELROSE - N. RITTER : Interaction of non linear progressing waves for semilinear wave equations II ; Zbl0575.35063
- [29] G. METIVIER : Interaction de deux chocs pour un système de deux lois de conservation en dimension deux d'espace ; Trans. Amer. Math. Soc (à paraître). Zbl0619.35075
- [30] G. METIVIER : The Cauchy problem for semilinear hyperbolic systems with discontinuous data ; Dube Math. J. (à paraître). Zbl0631.35056
- [31] G. METIVIER : Propagation, interaction and reflection of discontinuous progressing waves for semilinear systems ; (preprint). Zbl0687.35021
- [32] S. MIZOHATA : Lectures on the Cauchy problem ; Tata Inst., Bombay (1965). Zbl0176.08502MR36 #2955
- [33] M. OBERGUGGENBERGER : Semilinear mixed hyperbolic systems in two variables : reflection and density of singularities (preprint).
- [34] M. OBERGUGGENBERGER : Propagation and reflection of regularity of semilinear hyperbolic 2x2 systems in one space dimension ; (preprint). Zbl0624.35053
- [35] O. A. OLEINIK : Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation Usp. Mat. Nauk 14 (1959) pp 165-170, English Tranl in Amer. Math. Soc. Transl., ser 2 33 (1964) pp 285-290. Zbl0132.33303MR22 #8187
- [36] J. RAUCH : L2 is a continuable condition for Kreiss ' mixed problems ; Comm. Pure Appl. Math., 23 (1970) pp 221-232.
- [37] J. RAUCH : Symmetric positive systems with boundary Characteristic of constant multiplicity ; Trans. Amer. Math. Soc. 291 (1985) pp 167-187. Zbl0549.35099MR87a:35122
- [38] J. RAUCH - F. MASSEY : Differentiability of solutions to hyperbolic initial boundary value problems, Trans. Amer. Math. Soc, 189 (1974) pp 303-318. Zbl0282.35014MR49 #5582
- [39] J. RAUCH - M. REED : Propagation of singularities for semilinear hyperbolic equations in one space variable, Ann of Math 111 (1980) pp 531-552. Zbl0432.35055MR81h:35028
- [40] J. RAUCH - M. REED : Jump discontinuties of semilinear strictly hyperbolic systems in two variables : creation and propagation, Comm. Math. Phys, 81 (1981) pp 203-227. Zbl0468.35064MR82m:35104
- [41] J. RAUCH - M. REED : Non linear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J. 49 (1982) pp 379-475. Zbl0503.35055MR83m:35098
- [42] J. RAUCH - M. REED : Striated solutions to semilinear, two speed wave equations ; Indiana U ; Math. J, 34 1985 pp 337-353. Zbl0559.35053MR86m:35111
- [43] J. RAUCH - M. REED : Discontinuous progressing waves for semilinear systems ; Comm. Partial Diff. Equ. 10 (1985). Zbl0598.35069MR87g:35146
- [44] J. RAUCH - M. REED : Classical, conormal, semilinear waves, Seminaire Ecole Polytechnique, Exposé n° 5 (1985-1986). Zbl0615.35053
- [45] M. RITTER : Progressing wave solutions to non linear hyperbolic Cauchy problems ; Ph. D. thesis, M. I. T. (1984).
- [46] J. SMOLLER : Shock waves and Reaction Diffusion Equations ; Springer Verlag, New York (1983). Zbl0508.35002MR84d:35002
- [47] M. TAYLOR : Pseudodifferential operators ; Princeton University Press, Princeton (1981). Zbl0453.47026MR82i:35172
- [48] M. TOUGERON : Problème mixte avec condition de Neumann pour l'élastodynamique non linéaire (en préparation).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.