Problèmes de Cauchy et ondes non linéaires

Guy Métivier

Journées équations aux dérivées partielles (1986)

  • page 1-29
  • ISSN: 0752-0360

How to cite

top

Métivier, Guy. "Problèmes de Cauchy et ondes non linéaires." Journées équations aux dérivées partielles (1986): 1-29. <http://eudml.org/doc/93135>.

@article{Métivier1986,
author = {Métivier, Guy},
journal = {Journées équations aux dérivées partielles},
keywords = {waves; singular surface; Cauchy problem; semilinear; shocks},
language = {fre},
pages = {1-29},
publisher = {Ecole polytechnique},
title = {Problèmes de Cauchy et ondes non linéaires},
url = {http://eudml.org/doc/93135},
year = {1986},
}

TY - JOUR
AU - Métivier, Guy
TI - Problèmes de Cauchy et ondes non linéaires
JO - Journées équations aux dérivées partielles
PY - 1986
PB - Ecole polytechnique
SP - 1
EP - 29
LA - fre
KW - waves; singular surface; Cauchy problem; semilinear; shocks
UR - http://eudml.org/doc/93135
ER -

References

top
  1. [1] S. ALINHAC : Evolution d'une onde simple pour des équations non linéaires générales. Zbl0586.35005
  2. [2] S. ALINHAC : Interaction d'ondes simples pour des équations complètement non linéaires. Zbl0608.35041
  3. [3] M. BEALS - G. METIVIER : Progressing wave solution to certain non linear mixed problem ; Duke Math. J. (to appear). Zbl0613.35050
  4. [4] M. BEALS - G. METIVIER : Reflexion of transversal progressing waves in non linear strictly hyperbolic mixed problems ; Amer. J. Math (to appear). Zbl0633.35051
  5. [5] J. BERNING - M. REED : Reflection of singularities of one dimensional semilinear wave equations at boundanes ; J. Math. Anal. Appl. 72 (1979) pp 635-653. Zbl0435.35055MR81e:35084
  6. [6] J. M. BONY : Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires ; Ann. Sc. de l'Ecole Norm. Sup. 14 (1981) pp 209-246. Zbl0495.35024MR84h:35177
  7. [7] J. M. BONY : Interaction des singularités pour les équations aux dérivées partielles non linéaires ; Séminaire Goulaouic - Meyer - Schwartz, Ecole polytechnique ; Exposé n° 22 (1979-1980) et exposé n° 2 (1981-1982). Zbl0449.35006
  8. [8] J. M. BONY : Propagation et intéraction des singularités pour les solutions des équations aux dérivées partielles non linéaires ; Proc. Int. Conq. Math., Warszawa, (1983) pp 1133-1147. Zbl0573.35014MR87f:35156
  9. [9] J. M. BONY : Interaction des singularités pour les équations de Klein - Gordon non linéaires ; Séminaire Goulaouic - Meyer - Schwartz, Ecole polytechnique ; exposé n° 10 (1983-1984). Zbl0555.35118
  10. [10] J. M. BONY : Second microlocalization and propagation of singularities for semilinear hyperbolic equations ; Zbl0669.35073
  11. [11] J. CHAZARAIN - A. PIRIOU : Introduction à la théorie des équations aux dérivées partielles ; Gauthier Villars, Paris (1981). Zbl0446.35001MR82i:35001
  12. [12] R. COURANT - K.O. FRIEDRICHS : Supersonic Flow and Shock Waves ; Springer Verlag, New York 1949. 
  13. [13] R. COURANT - D. HILBERT : Methods of Mathematical Physics, Wiley - Inter-science, New York 1962. Zbl0099.29504
  14. [14] R. DI PERNA : Uniquencess of solutions of hyperbolic conservation Paws ; Indiana V. Math. J. 28 (1979), pp 137-187. Zbl0409.35057MR80i:35119
  15. [15] K. O. FRIEDRICHS : Symmetric hyperbolic linear differential equations ; Comm. Pure Appl ; Math. 7 (1954) pp 345-392. Zbl0059.08902MR16,44c
  16. [16] J. GLIMM : Solutions in the large for non linear hyperbolic systems of equations ; Comm. Pure Appl. Math. 18 (1965) pp 95-105. Zbl0141.28902MR33 #2976
  17. [17] F. JOHN : Formation of singularities in one dimensional non linear wave propagation ; Comm. Pure Appl Math, 27 (1974) pp 377-405. Zbl0302.35064MR51 #6163
  18. [18] T. KATO : The Cauchy problem for quasilinear symmetric hyperbolic systems ; Arch. Rat. Mech. Anal. 58 (1975). Zbl0343.35056MR52 #11341
  19. [19] H. O. KREISS : Initial boundary value Problems for hyperbolic systems ; Comm. Pure Appl. Math, 23 (1970) pp 277-298. Zbl0188.41102MR55 #10862
  20. [20] P. D. LAX : Hyperbolic systems of conservation laws II ; Comm. Pure Appl. Math, 10 (1957), pp 537-566. Zbl0081.08803MR20 #176
  21. [21] P. D. LAX : Schock waves and entropy ; Contributions to non linear functional Analysis ; (E. A. Zarantonello Ed) Academic Press, New York (1971). 
  22. [22] A. MAJDA : The stability of multidimensional schock fronts ; Mem. Amer Math. Soc, n° 275 (1983). Zbl0506.76075
  23. [23] A. MAJDA : The existence of multidimensional schock fronts ; Mem. Amer Math. Soc, n° 281 (1983). Zbl0517.76068
  24. [24] A. MAJDA : Compressible fluid flow and systems of conservation laws in several space variables ; Applied Math. Sc, 53, Springer verlag (1984). Zbl0537.76001MR85e:35077
  25. [25] A. MAJDA - S. OSHER : Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary ; Comm. Pure Appl. Math, 28 (1975) pp 607-676. Zbl0314.35061MR53 #13857
  26. [26] A. MAJDA - R. ROSALES : A theory for the spontaneous formation of Mach stems in reading shock fronts ; I the basic perturbation analysis ; SIAM J. Appl. Math (1984) pp 117-148. Zbl0584.76075MR86b:35133
  27. [27] R. MELROSE - N. RITTER : Interaction of non linear progressing waves for semilinear wave equations ; Ann Math, 121 (1985) pp 187-213. Zbl0575.35063MR86m:35005
  28. [28] R. MELROSE - N. RITTER : Interaction of non linear progressing waves for semilinear wave equations II ; Zbl0575.35063
  29. [29] G. METIVIER : Interaction de deux chocs pour un système de deux lois de conservation en dimension deux d'espace ; Trans. Amer. Math. Soc (à paraître). Zbl0619.35075
  30. [30] G. METIVIER : The Cauchy problem for semilinear hyperbolic systems with discontinuous data ; Dube Math. J. (à paraître). Zbl0631.35056
  31. [31] G. METIVIER : Propagation, interaction and reflection of discontinuous progressing waves for semilinear systems ; (preprint). Zbl0687.35021
  32. [32] S. MIZOHATA : Lectures on the Cauchy problem ; Tata Inst., Bombay (1965). Zbl0176.08502MR36 #2955
  33. [33] M. OBERGUGGENBERGER : Semilinear mixed hyperbolic systems in two variables : reflection and density of singularities (preprint). 
  34. [34] M. OBERGUGGENBERGER : Propagation and reflection of regularity of semilinear hyperbolic 2x2 systems in one space dimension ; (preprint). Zbl0624.35053
  35. [35] O. A. OLEINIK : Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation Usp. Mat. Nauk 14 (1959) pp 165-170, English Tranl in Amer. Math. Soc. Transl., ser 2 33 (1964) pp 285-290. Zbl0132.33303MR22 #8187
  36. [36] J. RAUCH : L2 is a continuable condition for Kreiss ' mixed problems ; Comm. Pure Appl. Math., 23 (1970) pp 221-232. 
  37. [37] J. RAUCH : Symmetric positive systems with boundary Characteristic of constant multiplicity ; Trans. Amer. Math. Soc. 291 (1985) pp 167-187. Zbl0549.35099MR87a:35122
  38. [38] J. RAUCH - F. MASSEY : Differentiability of solutions to hyperbolic initial boundary value problems, Trans. Amer. Math. Soc, 189 (1974) pp 303-318. Zbl0282.35014MR49 #5582
  39. [39] J. RAUCH - M. REED : Propagation of singularities for semilinear hyperbolic equations in one space variable, Ann of Math 111 (1980) pp 531-552. Zbl0432.35055MR81h:35028
  40. [40] J. RAUCH - M. REED : Jump discontinuties of semilinear strictly hyperbolic systems in two variables : creation and propagation, Comm. Math. Phys, 81 (1981) pp 203-227. Zbl0468.35064MR82m:35104
  41. [41] J. RAUCH - M. REED : Non linear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J. 49 (1982) pp 379-475. Zbl0503.35055MR83m:35098
  42. [42] J. RAUCH - M. REED : Striated solutions to semilinear, two speed wave equations ; Indiana U ; Math. J, 34 1985 pp 337-353. Zbl0559.35053MR86m:35111
  43. [43] J. RAUCH - M. REED : Discontinuous progressing waves for semilinear systems ; Comm. Partial Diff. Equ. 10 (1985). Zbl0598.35069MR87g:35146
  44. [44] J. RAUCH - M. REED : Classical, conormal, semilinear waves, Seminaire Ecole Polytechnique, Exposé n° 5 (1985-1986). Zbl0615.35053
  45. [45] M. RITTER : Progressing wave solutions to non linear hyperbolic Cauchy problems ; Ph. D. thesis, M. I. T. (1984). 
  46. [46] J. SMOLLER : Shock waves and Reaction Diffusion Equations ; Springer Verlag, New York (1983). Zbl0508.35002MR84d:35002
  47. [47] M. TAYLOR : Pseudodifferential operators ; Princeton University Press, Princeton (1981). Zbl0453.47026MR82i:35172
  48. [48] M. TOUGERON : Problème mixte avec condition de Neumann pour l'élastodynamique non linéaire (en préparation). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.