Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On wsq-primary ideals

Emel Aslankarayiğit UğurluEl Mehdi BoubaÜnsal TekirSuat Koç — 2023

Czechoslovak Mathematical Journal

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional...

Commutative graded- S -coherent rings

Anass AssarrarNajib MahdouÜnsal TekirSuat Koç — 2023

Czechoslovak Mathematical Journal

Recently, motivated by Anderson, Dumitrescu’s S -finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of S -coherent rings, which is the S -version of coherent rings. Let R = α G R α be a commutative ring with unity graded by an arbitrary commutative monoid G , and S a multiplicatively closed subset of nonzero homogeneous elements of R . We define R to be graded- S -coherent ring if every finitely generated homogeneous ideal of R is S -finitely presented. The purpose of this paper is to give the graded...

Rings with divisibility on descending chains of ideals

Oussama Aymane Es SafiNajib MahdouÜnsal Tekir — 2024

Czechoslovak Mathematical Journal

This paper deals with the rings which satisfy D C C d condition. This notion has been introduced recently by R. Dastanpour and A. Ghorbani (2017) as a generalization of Artnian rings. It is of interest to investigate more deeply this class of rings. This study focuses on commutative case. In this vein, we present this work in which we examine the transfer of these rings to the trivial, amalgamation and polynomial ring extensions. We also investigate the relationship between this class of rings and the...

Page 1

Download Results (CSV)