Asymptotic behavior of solutions to half-linear -difference equations.
We study oscillatory properties of the second order half-linear difference equation It will be shown that the basic facts of oscillation theory for this equation are essentially the same as those for the linear equation We present here the Picone type identity, Reid Roundabout Theorem and Sturmian theory for equation (HL). Some oscillation criteria are also given.
The paper can be understood as a completion of the -Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear -difference equations. The -Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice with . In addition to recalling the existing concepts of -regular variation and -rapid variation we introduce -regularly bounded functions and prove many related properties. The -Karamata theory is then...
The aim of this contribution is to study the role of the coefficient in the qualitative theory of the equation , where with . We discuss sign and smoothness conditions posed on , (non)availability of some transformations, and mainly we show how the behavior of , along with the behavior of the graininess of the time scale, affect some comparison results and (non)oscillation criteria. At the same time we provide a survey of recent results acquired by sophisticated modifications of the Riccati...
Článek se snaží přiblížit některé aspekty teorie regulární variace. Jde o pojem z klasické analýzy, který má bohatou historii a četné aplikace v teorii pravděpodobnosti, teorii čísel, integrálních transformacích, komplexní analýze, diferenciálních rovnicích, teorii her či teorii grafů. Regulárně měnící se funkce mají souvislost s mnoha matematickými pojmy, včetně škálové invariance, kterou náš výklad začíná, či konvergenčními testy pro nekonečné řady, kterými náš výklad končí. V průběhu výkladu...
We establish conditions which guarantee that the second order difference equation possesses a nontrivial solution with at least two generalized zero points in a given discrete interval
Page 1