Sur une classe d'extensions non ramifiées
1. Introduction. Soit L un corps de nombres de degré n sur le corps ℚ des nombres rationnels de discriminant . Si l’entier D n’est pas un carré, on note d le discriminant du corps quadratique ℚ(√D), sinon on pose d=1. Soit p un nombre premier non-ramifié dans L de sorte que le symbole des restes quadratiques (D/p) soit non-nul. Un théorème déjà ancien dû à A. Pellet ([3, page 245]), L. Stickelberger et G. Voronoï montre que la parité du nombre g d’idéaux premiers de L au-dessus de p est déterminée...
Page 1