Group actions on Jacobian varieties.
We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.
By using the Galerkin method, we prove the existence of weak solutions for the equations of the magneto-micropolar fluid motion in two and three dimensions in space. In the two-dimensional case, we also prove that such weak solution is unique. We also prove the reproductive property.
By using the spectral Galerkin method, we prove the existence of weak solutions for a system of equations of magnetohydrodynamic type in non-cylindrical domains.
For a topological property , we say that a space is star if for every open cover of the space there exists such that . We consider space with star countable extent establishing the relations between the star countable extent property and the properties star Lindelöf and feebly Lindelöf. We describe some classes of spaces in which the star countable extent property is equivalent to either the Lindelöf property or separability. An example is given of a Tychonoff star Lindelöf space with...
Page 1