An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.
M. A. Rojas-Medar; S. A. Lorca
Revista Matemática de la Universidad Complutense de Madrid (1995)
- Volume: 8, Issue: 2, page 431-458
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topRojas-Medar, M. A., and Lorca, S. A.. "An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.." Revista Matemática de la Universidad Complutense de Madrid 8.2 (1995): 431-458. <http://eudml.org/doc/44191>.
@article{Rojas1995,
abstract = {We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.},
author = {Rojas-Medar, M. A., Lorca, S. A.},
journal = {Revista Matemática de la Universidad Complutense de Madrid},
keywords = {Ecuaciones diferenciales en derivadas parciales; Dinámica de fluidos; Cálculo de errores; Cinética química; Método de elementos finitos; Reactividad química; spectral Galerkin method; error estimates; convergence; viscous chemical active fluid},
language = {eng},
number = {2},
pages = {431-458},
title = {An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.},
url = {http://eudml.org/doc/44191},
volume = {8},
year = {1995},
}
TY - JOUR
AU - Rojas-Medar, M. A.
AU - Lorca, S. A.
TI - An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.
JO - Revista Matemática de la Universidad Complutense de Madrid
PY - 1995
VL - 8
IS - 2
SP - 431
EP - 458
AB - We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.
LA - eng
KW - Ecuaciones diferenciales en derivadas parciales; Dinámica de fluidos; Cálculo de errores; Cinética química; Método de elementos finitos; Reactividad química; spectral Galerkin method; error estimates; convergence; viscous chemical active fluid
UR - http://eudml.org/doc/44191
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.