Algebraic approximation of manifolds and spaces
For a function (where is a real algebraic manifold) the following problem is studied. If is an algebraic subvariety of , can be approximated by rational regular functions such that We find that this is possible if and only if there exists a rational regular function such that and g(x) for any in . Similar results are obtained also in the analytic and in the Nash cases. For non approximable functions the minimal flatness locus is also studied....
Nel presente lavoro si studiano le applicazioni polinomiali proprie In particolare si prova: 1) se è un'applicazione polinomiale tale che è compatto per ogni , allora è propria; 2) se è polinomiale a fibra compatta e è chiuso in allora è propria; 3) l'insieme delle applicazioni polinomiali proprie di in è denso, nella topologia , nello spazio delle applicazioni di in .
We give some approximation theorems in the Whitney topology for a general class of analytic fiber bundles. This leads to a classification theorem which generalizes the classical ones.
Page 1