The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem.
We prove by using well-founded trees that a countable product of supercomplete spaces, scattered with respect to Čech-complete subsets, is supercomplete. This result extends results given in [Alstera], [Friedlera], [Frolika], [HohtiPelantb], [Pelanta] and its proof improves that given in [HohtiPelantb].
Download Results (CSV)