Monadic epimorphisms and applications
In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.
In this paperwe study the Hadamard product of inverse-positive matrices.We observe that this class of matrices is not closed under the Hadamard product, but we show that for a particular sign pattern of the inverse-positive matrices A and B, the Hadamard product A ◦ B−1 is again an inverse-positive matrix.
In this paper, the variety of closure n-valued Łukasiewicz algebras, that is, Łukasiewicz algebras of order n endowed with a closure operator, is investigated. The lattice of subvarieties in the particular case in which the open elements form a three-valued Heyting algebra is obtained.
In this paper we give a term equivalence between the simple k-cyclic Post algebra of order p, L p,k, and the finite field F(p k) with constants F(p). By using Lagrange polynomials, we give an explicit procedure to obtain an interpretation Φ1 of the variety V(L p,k) generated by L p,k into the variety V(F(p k)) generated by F(p k) and an interpretation Φ2 of V(F(p k)) into V(L p,k) such that Φ2Φ1(B) = B for every B ε V(L p,k) and Φ1Φ2(R) = R for every R ε V(F(p k)).
Page 1