The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For s>0, we consider bounded linear operators from into whose kernels K satisfy the conditions for x≠y, |γ|≤ [s]+1, for |γ|=[s], x≠y. We establish a new criterion for the boundedness of these operators from into the homogeneous Sobolev space . This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential...
In this paper we consider the regularity problem for the commutators where is a locally integrable function and are the Riesz transforms in the -dimensional euclidean space . More precisely, we prove that these commutators are bounded from into the Besov space for and if and only if is in the -Triebel-Lizorkin space . The reduction of our result to the case gives in particular that the commutators are bounded form into the Sobolev space if and only if is in the -Sobolev...
L'objet de ce travail est l'étude de la continuité des opérateurs d'intégrales singulières (au sens de Calderón-Zygmund) sur les espaces de Sobolev H. Il complète le travail fondamental de David-Journé [6], concernant le cas s = 0, et ceux de P. G. Lemarié [10] et M. Meyer [11] concernant le cas 0 < s < 1.
Download Results (CSV)