This study is mainly dedicated to the development and analysis of non-overlapping domain decomposition methods for solving continuous-pressure finite element formulations of the Stokes problem. These methods have the following special features. By keeping the equations and unknowns unchanged at the cross points, that is, points shared by more than two subdomains, one can interpret them as iterative solvers of the actual discrete problem directly issued from the finite element scheme. In this way,...
This study is mainly dedicated to the development and analysis of
non-overlapping domain decomposition methods for solving continuous-pressure
finite element formulations of the Stokes problem. These methods have the
following special features. By keeping the equations and unknowns unchanged at
the cross points, that is, points shared by more than two subdomains, one can
interpret them as iterative solvers of the actual discrete problem directly
issued from the finite element scheme. In this way,...
A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element...
A general setting is proposed for the mixed finite element approximations of
elliptic differential problems involving a unilateral boundary condition. The
treatment covers the Signorini problem as well as the unilateral contact
problem with or without friction. Existence, uniqueness for both the
continuous and the discrete problem as well as error estimates are established
in a general framework. As an application, the approximation of the Signorini
problem by the lowest order mixed finite element...
It is rather classical to model multiperforated plates by approximate impedance boundary
conditions. In this article we would like to compare an instance of such boundary
conditions obtained through a matched asymptotic expansions technique to direct numerical
computations based on a boundary element formulation in the case of linear acoustic.
Download Results (CSV)