Mixed formulations for a class of variational inequalities
Leila Slimane; Abderrahmane Bendali; Patrick Laborde
- Volume: 38, Issue: 1, page 177-201
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topSlimane, Leila, Bendali, Abderrahmane, and Laborde, Patrick. "Mixed formulations for a class of variational inequalities." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.1 (2004): 177-201. <http://eudml.org/doc/245205>.
@article{Slimane2004,
abstract = {A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element method of Raviart–Thomas is proved to converge with a quasi-optimal error bound.},
author = {Slimane, Leila, Bendali, Abderrahmane, Laborde, Patrick},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {variational inequalities; unilateral problems; Signorini problem; contact problems; mixed finite element methods; elliptic PDE; contact problem; finite element method; friction},
language = {eng},
number = {1},
pages = {177-201},
publisher = {EDP-Sciences},
title = {Mixed formulations for a class of variational inequalities},
url = {http://eudml.org/doc/245205},
volume = {38},
year = {2004},
}
TY - JOUR
AU - Slimane, Leila
AU - Bendali, Abderrahmane
AU - Laborde, Patrick
TI - Mixed formulations for a class of variational inequalities
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 1
SP - 177
EP - 201
AB - A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element method of Raviart–Thomas is proved to converge with a quasi-optimal error bound.
LA - eng
KW - variational inequalities; unilateral problems; Signorini problem; contact problems; mixed finite element methods; elliptic PDE; contact problem; finite element method; friction
UR - http://eudml.org/doc/245205
ER -
References
top- [1] D.A. Adams, Sobolev spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] L. Baillet and T. Sassi, Méthode d’éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C.R. Acad. Sciences Paris Série I 334 (2002) 917–922. Zbl1073.74047
- [3] F. Ben Belgacem, Y. Renard and L. Slimane, A mixed formulation for the Signorini problem in incompressible elasticity, theory and finite element approximation. Appl. Numer. Math. (to appear). Zbl1086.74037MR2134092
- [4] H. Brezis, Analyse fonctionnelle : Théorie et applications. Masson, Paris (1983). Zbl0511.46001MR697382
- [5] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, Berlin (1991). Zbl0788.73002MR1115205
- [6] F. Brezzi, W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities, Part II. Numer. Math 31 (1978) 1–16. Zbl0427.65077
- [7] D. Capatina-Papaghiuc, Contribution à la prévention de phénomènes de verrouillage numérique. Ph.D. thesis, Université de Pau, France (1997).
- [8] D. Capatina-Papaghiuc and N. Raynaud, Numerical approximation of stiff transmission problems by mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 32 (1998) 611–629. Zbl0907.73054
- [9] P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, Amsterdam (1978). Zbl0999.65129MR1115235
- [10] P. Coorevits, P. Hild, K. Lhalouani and T. Sassi, Mixed finite elemen methods for unilateral problems: convergence analysis and numerical studies. Math. Comp. 71 (2001) 1–25. Zbl1013.74062
- [11] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). Zbl0298.73001MR464857
- [12] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974). Zbl0281.49001MR463993
- [13] R.C. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28 (1974) 863–971. Zbl0297.65061
- [14] J. Haslinger, Mixed formulation of elliptic variational inequalities and its approximation. Appl. Math. 6 (1981) 462–475. Zbl0483.49003
- [15] J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics. Handb. Numer. Anal., Vol. IV: Finite Element Methods, Part 2 – Numerical Methods for solids, Part 2, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996). Zbl0873.73079
- [16] J. Jarušek, Contact problems with bounded friction, coercive case. Czech. Math. J. 33 (1983) 237–261. Zbl0519.73095
- [17] N. Kikuchi and J.T. Oden, Contact problems in elasticity: A Study of variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988). Zbl0685.73002MR961258
- [18] K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Num. Math. 7 (1999) 23–30. Zbl0923.73061
- [19] J.-L. Lions, Quelques méthodes de résolution de problème aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
- [20] U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. Zbl0192.49101
- [21] M. Moussaoui and K. Khodja, Régularité des solutions d’un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Comm. Partial Differential Equations 17 (1992) 805–826. Zbl0806.35049
- [22] N. Raynaud, Approximation par méthode d’éléments finis de problèmes de transmission raides. Ph.D. thesis, Université de Pau, France (1994).
- [23] J.E. Robert and J.-M. Thomas, Mixed and Hybrid Methods. Handb. Numer. Anal., Vol. II: Finite Element Methods, Part 1, North-Holland, Amesterdam (1991). Zbl0875.65090MR1115239
- [24] L. Slimane, Méthodes mixtes et traitement du verrouillage numérique pour la résolution des inéquations variationnelles. Ph.D. thesis, INSA de Toulouse, France (2001).
- [25] L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. C.R. Math. Acad. Sci. Paris 334 (2002) 87–92. Zbl0998.65063
- [26] L. Wang and G. Wang, Dual mixed finite element method for contact problem in elasticity. Math. Num. Sin. 21 (1999). Zbl0967.74070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.