Mixed formulations for a class of variational inequalities
Leila Slimane; Abderrahmane Bendali; Patrick Laborde
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 1, page 177-201
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- D.A. Adams, Sobolev spaces. Academic Press, New York (1975).
- L. Baillet and T. Sassi, Méthode d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C.R. Acad. Sciences Paris Série I334 (2002) 917–922.
- F. Ben Belgacem, Y. Renard and L. Slimane, A mixed formulation for the Signorini problem in incompressible elasticity, theory and finite element approximation. Appl. Numer. Math. (to appear).
- H. Brezis, Analyse fonctionnelle : Théorie et applications. Masson, Paris (1983).
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, Berlin (1991).
- F. Brezzi, W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities, Part II. Numer. Math31 (1978) 1–16.
- D. Capatina-Papaghiuc, Contribution à la prévention de phénomènes de verrouillage numérique. Ph.D. thesis, Université de Pau, France (1997).
- D. Capatina-Papaghiuc and N. Raynaud, Numerical approximation of stiff transmission problems by mixed finite element methods. RAIRO Modél. Math. Anal. Numér.32 (1998) 611–629.
- P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, Amsterdam (1978).
- P. Coorevits, P. Hild, K. Lhalouani and T. Sassi, Mixed finite elemen methods for unilateral problems: convergence analysis and numerical studies. Math. Comp.71(2001) 1–25.
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
- I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974).
- R.C. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comp.28 (1974) 863–971.
- J. Haslinger, Mixed formulation of elliptic variational inequalities and its approximation. Appl. Math.6 (1981) 462–475.
- J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics. Handb. Numer. Anal., Vol. IV: Finite Element Methods, Part 2 – Numerical Methods for solids, Part 2, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996).
- J. Jarušek, Contact problems with bounded friction, coercive case. Czech. Math. J.33 (1983) 237–261.
- N. Kikuchi and J.T. Oden, Contact problems in elasticity: A Study of variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988).
- K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Num. Math.7 (1999) 23–30.
- J.-L. Lions, Quelques méthodes de résolution de problème aux limites non linéaires. Dunod, Paris (1969).
- U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Adv. Math.3 (1969) 510–585.
- M. Moussaoui and K. Khodja, Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Comm. Partial Differential Equations17 (1992) 805–826.
- N. Raynaud, Approximation par méthode d'éléments finis de problèmes de transmission raides. Ph.D. thesis, Université de Pau, France (1994).
- J.E. Robert and J.-M. Thomas, Mixed and Hybrid Methods. Handb. Numer. Anal., Vol. II: Finite Element Methods, Part 1, North-Holland, Amesterdam (1991).
- L. Slimane, Méthodes mixtes et traitement du verrouillage numérique pour la résolution des inéquations variationnelles. Ph.D. thesis, INSA de Toulouse, France (2001).
- L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities.C.R. Math. Acad. Sci. Paris334 (2002) 87–92.
- L. Wang and G. Wang, Dual mixed finite element method for contact problem in elasticity. Math. Num. Sin. 21 (1999).
Citations in EuDML Documents
top- F. Ben Belgacem, C. Bernardi, A. Blouza, M. Vohralík, On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation
- David Doyen, Alexandre Ern, Serge Piperno, A three-field augmented Lagrangian formulation of unilateral contact problems with cohesive forces
- Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík, A finite element discretization of the contact between two membranes
- Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík, A finite element discretization of the contact between two membranes
- Z. Belhachmi, J.-M. Sac-Epée, S. Tahir, Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity
- Shawn W. Walker, A mixed formulation of a sharp interface model of stokes flow with moving contact lines