Intégrales orbitales sur les algèbres de Lie réductives.
Soient un groupe de Lie réductif d’algèbre de Lie , un opérateur différentiel non nul à coefficients constants et -invariant sur , et une distribution -invariante sur . Nous montrons que l’équation différentielle a des solutions dans l’espace des distributions -invariantes sur ; de plus, si est tempérée ou d’ordre fini, on peut trouver des solutions ayant les mêmes propriétés. Si est un opérateur différentiel bi-invariant non nul sur , Benabdallah et Rouvière ont donné une condition...
Page 1