We extend the definition of Hochschild and cyclic homologies of a scheme over a commutative ring k to define the Hochschild homologies HH⁎(X/S) and cyclic homologies HC⁎(X/S) of a scheme X with respect to an arbitrary base scheme S. Our main purpose is to study product structures on the Hochschild homology groups HH⁎(X/S). In particular, we show that carries the structure of a graded algebra.
Dans cet article, nous définissons une catégorie des motifs sur une catégorie monoïdale symétrique vérifiant certaines hypothèses. Le rôle des espaces sur est joué par les monoïdes (non necessairement commutatifs) dans . Pour définir les morphismes dans , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes dans , où est le motif de Tate dans .
Download Results (CSV)