The aim of the paper is to define a k-cosymplectic structure on the standard k-cosymplectic manifold associated to a regular Lagrangian and to reduce it via Marsden-Weinstein reduction.
Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.
The object of the present paper is to investigate the nature of Ricci solitons on D-homothetically deformed Kenmotsu manifold with generalized weakly symmetric and generalized weakly Ricci symmetric curvature restrictions.
In the present paper we give some properties of -biharmonic hypersurfaces in real space forms. By using the -biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the -biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider -biharmonic vertical cylinders in .
Download Results (CSV)