Let be a commutative Noetherian ring and an ideal of . We introduce the concept of -weakly Laskerian -modules, and we show that if is an -weakly Laskerian -module and is a non-negative integer such that is -weakly Laskerian for all and all , then for any -weakly Laskerian submodule of , the -module is -weakly Laskerian. In particular, the set of associated primes of is finite. As a consequence, it follows that if is a finitely generated -module and is an -weakly...
Let be a commutative Noetherian ring with identity and an ideal of . It is shown that, if is a non-zero minimax -module such that for all , then the -module is -cominimax for all . In fact, is -cofinite for all . Also, we prove that for a weakly Laskerian -module , if is local and is a non-negative integer such that for all , then and are weakly Laskerian for all and all . As a consequence, the set of associated primes of is finite for all , whenever and...
Download Results (CSV)