The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let n ≥ 3 be a positive integer. We study symmetric skew n-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew n-derivation has to be commutative.
We investigate 2-local Jordan automorphisms on operator algebras. In particular, we show that every 2-local Jordan automorphism of the algebra of all n× n real or complex matrices is either an automorphism or an anti-automorphism. The same is true for 2-local Jordan automorphisms of any subalgebra of ℬ which contains the ideal of all compact operators on X, where X is a real or complex separable Banach spaces and ℬ is the algebra of all bounded linear operators on X.
Let be an infinite-dimensional almost separable Hilbert space. We show that every local automorphism of , the algebra of all bounded linear operators on a Hilbert space , is an automorphism.
We study continuous maps on alternate matrices over complex field which preserve zeros of Lie product.
Let φ be a Jordan automorphism of an algebra . The situation when an element a ∈ satisfies is considered. The result which we obtain implies the Kleinecke-Shirokov theorem and Jacobson’s lemma.
Motivated by the powerful and elegant works of Miers (1971, 1973, 1978) we mainly study nonlinear Lie-type derivations of von Neumann algebras. Let 𝓐 be a von Neumann algebra without abelian central summands of type I₁. It is shown that every nonlinear Lie n-derivation of 𝓐 has the standard form, that is, can be expressed as a sum of an additive derivation and a central-valued mapping which annihilates each (n-1)th commutator of 𝓐. Several potential research topics related to our work are also...
Let be a commutative ring, be a generalized matrix algebra over with weakly loyal bimodule and be the center of . Suppose that is an -bilinear mapping and that is a trace of . The aim of this article is to describe the form of satisfying the centralizing condition (and commuting condition ) for all . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) has the so-called proper form from a new perspective. Using the aforementioned...
Download Results (CSV)