The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the problem of -boundedness () of operators of the form for a commuting system of self-adjoint left-invariant differential operators on a Lie group of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when is a homogeneous group and are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.
Let L be a homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability s > 6/2 is required on the multiplier.
Download Results (CSV)