The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Cluster ensembles, quantization and the dilogarithm

Vladimir V. FockAlexander B. Goncharov — 2009

Annales scientifiques de l'École Normale Supérieure

A cluster ensemble is a pair ( 𝒳 , 𝒜 ) of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group Γ . The space 𝒜 is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism p : 𝒜 𝒳 . The space 𝒜 is equipped with a closed 2 -form, possibly degenerate, and the space 𝒳 has a Poisson structure. The map p is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role...

Dimers and cluster integrable systems

Alexander B. GoncharovRichard Kenyon — 2013

Annales scientifiques de l'École Normale Supérieure

We show that the dimer model on a bipartite graph Γ on a torus gives rise to a quantum integrable system of special type, which we call a. The phase space of the classical system contains, as an open dense subset, the moduli space Ł Γ of line bundles with connections on the graph Γ . The sum of Hamiltonians is essentially the partition function of the dimer model. We say that two such graphs Γ 1 and Γ 2 areif the Newton polygons of the corresponding partition functions coincide up to translation. We define...

Page 1

Download Results (CSV)