Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Cluster ensembles, quantization and the dilogarithm

Vladimir V. FockAlexander B. Goncharov — 2009

Annales scientifiques de l'École Normale Supérieure

A cluster ensemble is a pair ( 𝒳 , 𝒜 ) of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group Γ . The space 𝒜 is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism p : 𝒜 𝒳 . The space 𝒜 is equipped with a closed 2 -form, possibly degenerate, and the space 𝒳 has a Poisson structure. The map p is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role...

Dimers and cluster integrable systems

Alexander B. GoncharovRichard Kenyon — 2013

Annales scientifiques de l'École Normale Supérieure

We show that the dimer model on a bipartite graph Γ on a torus gives rise to a quantum integrable system of special type, which we call a. The phase space of the classical system contains, as an open dense subset, the moduli space Ł Γ of line bundles with connections on the graph Γ . The sum of Hamiltonians is essentially the partition function of the dimer model. We say that two such graphs Γ 1 and Γ 2 areif the Newton polygons of the corresponding partition functions coincide up to translation. We define...

Page 1

Download Results (CSV)