The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Miura opers and critical points of master functions

Evgeny MukhinAlexander Varchenko — 2005

Open Mathematics

Critical points of a master function associated to a simple Lie algebra 𝔤 come in families called the populations [11]. We prove that a population is isomorphic to the flag variety of the Langlands dual Lie algebra t 𝔤 . The proof is based on the correspondence between critical points and differential operators called the Miura opers. For a Miura oper D, associated with a critical point of a population, we show that all solutions of the differential equation DY=0 can be written explicitly in terms...

BGG resolutions via configuration spaces

Michael FalkVadim SchechtmanAlexander Varchenko — 2014

Journal de l’École polytechnique — Mathématiques

We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the 𝔰𝔩 2 Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.

Page 1

Download Results (CSV)