The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Volume et courbure totale pour les hypersurfaces de l'espace euclidien

Alexandru Oancea — 2004

Annales de l’institut Fourier

Nous étudions des analogues en dimension supérieure de l’inégalité de Burago A ( S ) R 2 T ( S ) , avec S une surface fermée de classe C 2 immergée dans 3 , A ( S ) son aire et T ( S ) sa courbure totale. Nous donnons un exemple explicite qui prouve qu’une inégalité analogue de la forme vol ( M ) C n R n T ( M ) , avec C n > 0 une constante, ne peut être vraie pour une hypersurface fermée M de classe C 2 dans n + 1 , n 3 . Nous mettons toutefois en évidence une condition suffisante sur la courbure de Ricci sous laquelle l’inégalité est vérifiée en dimension n = 3 . En dimension...

Fredholm theory and transversality for the parametrized and for the S 1 -invariant symplectic action

Frédéric BourgeoisAlexandru Oancea — 2010

Journal of the European Mathematical Society

We study the parametrized Hamiltonian action functional for finite-dimensional families of Hamiltonians. We show that the linearized operator for the L 2 -gradient lines is Fredholm and surjective, for a generic choice of Hamiltonian and almost complex structure. We also establish the Fredholm property and transversality for generic S 1 -invariant families of Hamiltonians and almost complex structures, parametrized by odd-dimensional spheres. This is a foundational result used to define S 1 -equivariant...

Rabinowitz Floer homology and symplectic homology

Kai CieliebakUrs FrauenfelderAlexandru Oancea — 2010

Annales scientifiques de l'École Normale Supérieure

The first two authors have recently defined Rabinowitz Floer homology groups R F H * ( M , W ) associated to a separating exact embedding of a contact manifold ( M , ξ ) into a symplectic manifold ( W , ω ) . These depend only on the bounded component V of W M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz Floer homology R F H * ( M , W ) , which then maps to symplectic cohomology of V . We compute R F H * ( S T * L , T * L ) , where S T * L is the unit cosphere bundle of a closed manifold...

Page 1

Download Results (CSV)