The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Adjoint representation of E 8 and del Pezzo surfaces of degree 1

Vera V. SerganovaAlexei N. Skorobogatov — 2011

Annales de l’institut Fourier

Let X be a del Pezzo surface of degree 1 , and let G be the simple Lie group of type E 8 . We construct a locally closed embedding of a universal torsor over X into the G -orbit of the highest weight vector of the adjoint representation. This embedding is equivariant with respect to the action of the Néron-Severi torus T of X identified with a maximal torus of G extended by the group of scalars. Moreover, the T -invariant hyperplane sections of the torsor defined by the roots of G are the inverse images...

The Brauer group and the Brauer–Manin set of products of varieties

Alexei N. SkorobogatovYuri G. Zahrin — 2014

Journal of the European Mathematical Society

Let X and Y be smooth and projective varieties over a field k finitely generated over Q , and let X ¯ and Y ¯ be the varieties over an algebraic closure of k obtained from X and Y , respectively, by extension of the ground field. We show that the Galois invariant subgroup of Br ( X ¯ ) Br( Y ¯ ) has finite index in the Galois invariant subgroup of Br ( X ¯ × Y ¯ ) . This implies that the cokernel of the natural map Br ( X ) Br ( Y ) Br ( X × Y ) is finite when k is a number field. In this case we prove that the Brauer–Manin set of the product of...

Page 1

Download Results (CSV)