Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the eigenvalues of a Robin problem with a large parameter

Alexey Filinovskiy — 2014

Mathematica Bohemica

We consider the Robin eigenvalue problem Δ u + λ u = 0 in Ω , u / ν + α u = 0 on Ω where Ω n , n 2 is a bounded domain and α is a real parameter. We investigate the behavior of the eigenvalues λ k ( α ) of this problem as functions of the parameter α . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative λ 1 ' ( α ) . Assuming that the boundary Ω is of class C 2 we obtain estimates to the difference λ k D - λ k ( α ) between the k -th eigenvalue of the Laplace operator with Dirichlet...

Spectrum of the weighted Laplace operator in unbounded domains

Alexey Filinovskiy — 2011

Mathematica Bohemica

We investigate the spectral properties of the differential operator - r s Δ , s 0 with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm u L 2 , s ( Ω ) 2 = Ω r - s | u | 2 d x , we study the structure of the spectrum with respect to the parameter s . Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous.

Page 1

Download Results (CSV)