We give a general upper bound for the irrationality exponent of algebraic Laurent series with coefficients in a finite field. Our proof is based on a method introduced in a different framework by Adamczewski and Cassaigne. It makes use of automata theory and, in our context, of a classical theorem due to Christol. We then introduce a new approach which allows us to strongly improve this general bound in many cases. As an illustration, we give a few examples of algebraic Laurent series for which...
Decimal expansions of classical constants such as , and have long been a source of difficult questions. In the case of finite characteristic numbers (Laurent series with coefficients in a finite field), where no carry-over difficulties appear, the situation seems to be simplified and drastically different. On the other hand, the theory of Drinfeld modules provides analogs of real numbers such as , or values. Hence, it became reasonable to enquire how “complex” the Laurent representation...
En 1976, Baum et Sweet ont donné le premier exemple d’une série formelle algébrique de degré sur ayant un développement en fraction continue dont les quotients partiels sont tous des polynômes en de degré ou . Cette série formelle est l’unique solution dans le corps de l’équation . En 1986, Mills et Robbins ont décrit un algorithme permettant de calculer le développement en fraction continue de la série de Baum et Sweet.
Dans cet article, nous considérons les équations plus...
Download Results (CSV)