Subword complexity and finite characteristic numbers

Alina Firicel[1]

  • [1] Université de Lyon Université Lyon 1 Institut Camille Jordan UMR 5208 du CNRS 43, boulevard du 11 novembre 1918 F-69622 Villeurbanne Cedex, France

Actes des rencontres du CIRM (2009)

  • Volume: 1, Issue: 1, page 29-34
  • ISSN: 2105-0597

Abstract

top
Decimal expansions of classical constants such as 2 , π and ζ ( 3 ) have long been a source of difficult questions. In the case of finite characteristic numbers (Laurent series with coefficients in a finite field), where no carry-over difficulties appear, the situation seems to be simplified and drastically different. On the other hand, the theory of Drinfeld modules provides analogs of real numbers such as π , e or ζ values. Hence, it became reasonable to enquire how “complex” the Laurent representation of these “numbers” is.

How to cite

top

Firicel, Alina. "Subword complexity and finite characteristic numbers." Actes des rencontres du CIRM 1.1 (2009): 29-34. <http://eudml.org/doc/10009>.

@article{Firicel2009,
abstract = {Decimal expansions of classical constants such as $\sqrt\{2\}$, $\pi $ and $\zeta (3)$ have long been a source of difficult questions. In the case of finite characteristic numbers (Laurent series with coefficients in a finite field), where no carry-over difficulties appear, the situation seems to be simplified and drastically different. On the other hand, the theory of Drinfeld modules provides analogs of real numbers such as $\pi $, $e$ or $\zeta $ values. Hence, it became reasonable to enquire how “complex” the Laurent representation of these “numbers” is.},
affiliation = {Université de Lyon Université Lyon 1 Institut Camille Jordan UMR 5208 du CNRS 43, boulevard du 11 novembre 1918 F-69622 Villeurbanne Cedex, France},
author = {Firicel, Alina},
journal = {Actes des rencontres du CIRM},
language = {eng},
month = {3},
number = {1},
pages = {29-34},
publisher = {CIRM},
title = {Subword complexity and finite characteristic numbers},
url = {http://eudml.org/doc/10009},
volume = {1},
year = {2009},
}

TY - JOUR
AU - Firicel, Alina
TI - Subword complexity and finite characteristic numbers
JO - Actes des rencontres du CIRM
DA - 2009/3//
PB - CIRM
VL - 1
IS - 1
SP - 29
EP - 34
AB - Decimal expansions of classical constants such as $\sqrt{2}$, $\pi $ and $\zeta (3)$ have long been a source of difficult questions. In the case of finite characteristic numbers (Laurent series with coefficients in a finite field), where no carry-over difficulties appear, the situation seems to be simplified and drastically different. On the other hand, the theory of Drinfeld modules provides analogs of real numbers such as $\pi $, $e$ or $\zeta $ values. Hence, it became reasonable to enquire how “complex” the Laurent representation of these “numbers” is.
LA - eng
UR - http://eudml.org/doc/10009
ER -

References

top
  1. B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Annals of Mathematics 165 (2007), 547–565. Zbl1195.11094MR2299740
  2. B. Adamczewski & Y. Bugeaud & F. Luca, Sur la complexité des nombres algébriques. C. R. Math. Acad. Sci. Paris, 339(2004), 11-14. Zbl1119.11019MR2075225
  3. J.-P. Allouche, Sur la transcendance de la série formelle Π , Journal de Théorie des Nombres de Bordeaux 2 (1990), 103–117. Zbl0709.11067MR1061761
  4. J.-P. Allouche & J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. Zbl1086.11015MR1997038
  5. David H. Bailey, Peter B. Borwein and Simon Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation, vol. 66, no. 218 (1997), pg. 903?-913. Zbl0879.11073MR1415794
  6. R.M. Beals & D.S. Thakur, Computational classification of numbers and algebraic properties, Internat. Math. Res. Notices, 15 (1998), 799–818. Zbl0916.03029MR1639559
  7. J. Berstel and P. Séébold , Algebraic combinatorics on Words, chapter Sturmian words, Cambridge University Press (2002). Zbl0883.68104MR1905123
  8. V. Berthé, Automates et valeurs de transcendance du logarithme de Carlitz Acta Arithmetica LXVI.4 (1994), 369–390. Zbl0784.11024MR1288353
  9. V. Berthé, Combinaisons linéaires de ζ ( s ) / Π s sur F q ( x ) , pour 1 s q - 2 J. Number Theory 53 (1995), 272–299. Zbl0853.11062MR1348764
  10. V. Berthé, De nouvelles preuves preuves “automatiques” de transcendance pour la fonction zeta de Carlitz Journées Arithmétiques de Genève, Astérisque 209 (1992), 159–168 . Zbl0788.11020MR1211009
  11. V. Berthé, Fonction zeta de Carlitz et automates, Journal de Théorie des Nombres de Bordeaux 5 (1993), 53–77. Zbl0784.11025MR1251227
  12. L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J., 1 (1935), 137–168. Zbl0012.04904MR1545872
  13. D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. (1933), 8, 254?-260. Zbl0007.33701
  14. H. Cherif, B. de Mathan, Irrationality measures of Carlitz zeta values in characteristic p , J. Number Theory 44 (1993), 260–272. Zbl0780.11031MR1233288
  15. Christol, G.; Kamae, T.; Mendès France, Michel; Rauzy, Gérard, Suites algébriques, automates et substitutions, Bulletin de la Société Mathématique de France, 108 (1980), 401–419. Zbl0472.10035MR614317
  16. A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192. Zbl0253.02029MR457011
  17. A. Firicel, Subword Complexity and Laurent series over finite fields, in progress. 
  18. D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, Berlin, 1996. Zbl0874.11004MR1423131
  19. M. Morse & G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–866. Zbl0019.33502MR1507944
  20. D.S. Thakur, Function Field Arithmetic, World Scientfic, Singapore, 2004. Zbl1061.11001MR2091265
  21. L.J. Wade, Certain quantities transcendental over G F ( p n ) ( x ) , Duke Math. J. 8 (1941), 701–720. Zbl0063.08101MR6157
  22. J. Yu, Transcendence and Special Zeta Values in Characteristic p , Annals of Math. 134 (1991), 1–23. Zbl0734.11040MR1114606

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.