Subword complexity and finite characteristic numbers
- [1] Université de Lyon Université Lyon 1 Institut Camille Jordan UMR 5208 du CNRS 43, boulevard du 11 novembre 1918 F-69622 Villeurbanne Cedex, France
Actes des rencontres du CIRM (2009)
- Volume: 1, Issue: 1, page 29-34
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topFiricel, Alina. "Subword complexity and finite characteristic numbers." Actes des rencontres du CIRM 1.1 (2009): 29-34. <http://eudml.org/doc/10009>.
@article{Firicel2009,
abstract = {Decimal expansions of classical constants such as $\sqrt\{2\}$, $\pi $ and $\zeta (3)$ have long been a source of difficult questions. In the case of finite characteristic numbers (Laurent series with coefficients in a finite field), where no carry-over difficulties appear, the situation seems to be simplified and drastically different. On the other hand, the theory of Drinfeld modules provides analogs of real numbers such as $\pi $, $e$ or $\zeta $ values. Hence, it became reasonable to enquire how “complex” the Laurent representation of these “numbers” is.},
affiliation = {Université de Lyon Université Lyon 1 Institut Camille Jordan UMR 5208 du CNRS 43, boulevard du 11 novembre 1918 F-69622 Villeurbanne Cedex, France},
author = {Firicel, Alina},
journal = {Actes des rencontres du CIRM},
language = {eng},
month = {3},
number = {1},
pages = {29-34},
publisher = {CIRM},
title = {Subword complexity and finite characteristic numbers},
url = {http://eudml.org/doc/10009},
volume = {1},
year = {2009},
}
TY - JOUR
AU - Firicel, Alina
TI - Subword complexity and finite characteristic numbers
JO - Actes des rencontres du CIRM
DA - 2009/3//
PB - CIRM
VL - 1
IS - 1
SP - 29
EP - 34
AB - Decimal expansions of classical constants such as $\sqrt{2}$, $\pi $ and $\zeta (3)$ have long been a source of difficult questions. In the case of finite characteristic numbers (Laurent series with coefficients in a finite field), where no carry-over difficulties appear, the situation seems to be simplified and drastically different. On the other hand, the theory of Drinfeld modules provides analogs of real numbers such as $\pi $, $e$ or $\zeta $ values. Hence, it became reasonable to enquire how “complex” the Laurent representation of these “numbers” is.
LA - eng
UR - http://eudml.org/doc/10009
ER -
References
top- B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Annals of Mathematics 165 (2007), 547–565. Zbl1195.11094MR2299740
- B. Adamczewski & Y. Bugeaud & F. Luca, Sur la complexité des nombres algébriques. C. R. Math. Acad. Sci. Paris, 339(2004), 11-14. Zbl1119.11019MR2075225
- J.-P. Allouche, Sur la transcendance de la série formelle , Journal de Théorie des Nombres de Bordeaux 2 (1990), 103–117. Zbl0709.11067MR1061761
- J.-P. Allouche & J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. Zbl1086.11015MR1997038
- David H. Bailey, Peter B. Borwein and Simon Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation, vol. 66, no. 218 (1997), pg. 903?-913. Zbl0879.11073MR1415794
- R.M. Beals & D.S. Thakur, Computational classification of numbers and algebraic properties, Internat. Math. Res. Notices, 15 (1998), 799–818. Zbl0916.03029MR1639559
- J. Berstel and P. Séébold , Algebraic combinatorics on Words, chapter Sturmian words, Cambridge University Press (2002). Zbl0883.68104MR1905123
- V. Berthé, Automates et valeurs de transcendance du logarithme de Carlitz Acta Arithmetica LXVI.4 (1994), 369–390. Zbl0784.11024MR1288353
- V. Berthé, Combinaisons linéaires de sur , pour J. Number Theory 53 (1995), 272–299. Zbl0853.11062MR1348764
- V. Berthé, De nouvelles preuves preuves “automatiques” de transcendance pour la fonction zeta de Carlitz Journées Arithmétiques de Genève, Astérisque 209 (1992), 159–168 . Zbl0788.11020MR1211009
- V. Berthé, Fonction zeta de Carlitz et automates, Journal de Théorie des Nombres de Bordeaux 5 (1993), 53–77. Zbl0784.11025MR1251227
- L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J., 1 (1935), 137–168. Zbl0012.04904MR1545872
- D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. (1933), 8, 254?-260. Zbl0007.33701
- H. Cherif, B. de Mathan, Irrationality measures of Carlitz zeta values in characteristic , J. Number Theory 44 (1993), 260–272. Zbl0780.11031MR1233288
- Christol, G.; Kamae, T.; Mendès France, Michel; Rauzy, Gérard, Suites algébriques, automates et substitutions, Bulletin de la Société Mathématique de France, 108 (1980), 401–419. Zbl0472.10035MR614317
- A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192. Zbl0253.02029MR457011
- A. Firicel, Subword Complexity and Laurent series over finite fields, in progress.
- D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, Berlin, 1996. Zbl0874.11004MR1423131
- M. Morse & G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–866. Zbl0019.33502MR1507944
- D.S. Thakur, Function Field Arithmetic, World Scientfic, Singapore, 2004. Zbl1061.11001MR2091265
- L.J. Wade, Certain quantities transcendental over , Duke Math. J. 8 (1941), 701–720. Zbl0063.08101MR6157
- J. Yu, Transcendence and Special Zeta Values in Characteristic , Annals of Math. 134 (1991), 1–23. Zbl0734.11040MR1114606
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.