Annales scientifiques de l'École Normale Supérieure
We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group over a suitable non-Archimedean field we define a map from the Bruhat-Tits building to the Berkovich analytic space associated with . Composing this map with the projection of to its flag varieties, we define a family of compactifications of . This generalizes results by Berkovich in the case of split groups.
Moreover,...
Soit un schéma projectif intègre défini sur un corps de nombres ; soit un fibré en droites ample sur muni d’une métrique adélique semi-positive au sens de Zhang. Les résultats principaux de cet article sont :
Une formule qui calcule les hauteurs locales (relativement à ) d’un diviseur de Cartier sur comme des « mesures...