Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings

Bertrand Rémy; Amaury Thuillier; Annette Werner

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 3, page 461-554
  • ISSN: 0012-9593

Abstract

top
We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group G over a suitable non-Archimedean field k we define a map from the Bruhat-Tits building ( G , k ) to the Berkovich analytic space G an associated with G . Composing this map with the projection of G an to its flag varieties, we define a family of compactifications of ( G , k ) . This generalizes results by Berkovich in the case of split groups. Moreover, we show that the boundary strata of the compactified buildings are precisely the Bruhat-Tits buildings associated with a certain class of parabolics. We also investigate the stabilizers of boundary points and prove a mixed Bruhat decomposition theorem for them.

How to cite

top

Rémy, Bertrand, Thuillier, Amaury, and Werner, Annette. "Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings." Annales scientifiques de l'École Normale Supérieure 43.3 (2010): 461-554. <http://eudml.org/doc/272160>.

@article{Rémy2010,
abstract = {We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group $\mathrm \{G\}$ over a suitable non-Archimedean field $k$ we define a map from the Bruhat-Tits building $\mathcal \{B\}(\mathrm \{G\},k)$ to the Berkovich analytic space $\mathrm \{G\}^\{\rm an\}$ associated with $\mathrm \{G\}$. Composing this map with the projection of $\mathrm \{G\}^\{\rm an\}$ to its flag varieties, we define a family of compactifications of $\mathcal \{B\}(\mathrm \{G\},k)$. This generalizes results by Berkovich in the case of split groups. Moreover, we show that the boundary strata of the compactified buildings are precisely the Bruhat-Tits buildings associated with a certain class of parabolics. We also investigate the stabilizers of boundary points and prove a mixed Bruhat decomposition theorem for them.},
author = {Rémy, Bertrand, Thuillier, Amaury, Werner, Annette},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic group; local field; Berkovich geometry; Bruhat-Tits building; compactification},
language = {eng},
number = {3},
pages = {461-554},
publisher = {Société mathématique de France},
title = {Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings},
url = {http://eudml.org/doc/272160},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Rémy, Bertrand
AU - Thuillier, Amaury
AU - Werner, Annette
TI - Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 3
SP - 461
EP - 554
AB - We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group $\mathrm {G}$ over a suitable non-Archimedean field $k$ we define a map from the Bruhat-Tits building $\mathcal {B}(\mathrm {G},k)$ to the Berkovich analytic space $\mathrm {G}^{\rm an}$ associated with $\mathrm {G}$. Composing this map with the projection of $\mathrm {G}^{\rm an}$ to its flag varieties, we define a family of compactifications of $\mathcal {B}(\mathrm {G},k)$. This generalizes results by Berkovich in the case of split groups. Moreover, we show that the boundary strata of the compactified buildings are precisely the Bruhat-Tits buildings associated with a certain class of parabolics. We also investigate the stabilizers of boundary points and prove a mixed Bruhat decomposition theorem for them.
LA - eng
KW - algebraic group; local field; Berkovich geometry; Bruhat-Tits building; compactification
UR - http://eudml.org/doc/272160
ER -

References

top
  1. [1] Schémas en groupes. Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA3) (M. Demazure & A. Grothendieck, éds.), Lecture Notes in Math. 151–153, 1970. Zbl0207.51401
  2. [2] P. Abramenko & K. S. Brown, Buildings. Theory and applications, Graduate Texts in Math. 248, Springer, 2008. Zbl1214.20033MR2439729
  3. [3] W. L. J. Baily & A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math.84 (1966), 442–528. Zbl0154.08602MR216035
  4. [4] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs 33, Amer. Math. Soc., 1990. Zbl0715.14013MR1070709
  5. [5] V. G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. I.H.É.S. 78 (1993), 5–161. Zbl0804.32019MR1259429
  6. [6] V. G. Berkovich, Vanishing cycles for formal schemes, Invent. Math.115 (1994), 539–571. Zbl0791.14008MR1262943
  7. [7] V. G. Berkovich, The automorphism group of the Drinfelʼd half-plane, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), 1127–1132. Zbl0856.14007MR1360770
  8. [8] V. G. Berkovich, p -adic analytic spaces, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), extra vol. II, 1998, 141–151. Zbl0949.14010MR1648064
  9. [9] A. Borel, Linear algebraic groups, second éd., Graduate Texts in Math. 126, Springer, 1991. Zbl0726.20030MR1102012
  10. [10] A. Borel & L. Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory & Applications, Birkhäuser, 2006. Zbl1100.22001MR2189882
  11. [11] A. Borel & J-P. Serre, Corners and arithmetic groups, Comment. Math. Helv.48 (1973), 436–491. Zbl0274.22011MR387495
  12. [12] A. Borel & J. Tits, Groupes réductifs, Publ. Math. I.H.É.S. 27 (1965), 55–150. Zbl0145.17402MR207712
  13. [13] S. Bosch, U. Güntzer & R. Remmert, Non-Archimedean analysis, Grund. Math. Wiss. 261, Springer, 1984. Zbl0539.14017MR746961
  14. [14] S. Bosch, W. Lütkebohmert & M. Raynaud, Néron models, Ergebnisse Math. Grenzg. 21, Springer, 1990. Zbl0705.14001
  15. [15] N. Bourbaki, Algèbre commutative, ch. 5-6, Éléments de mathématique, Springer, 2007. Zbl1107.13002
  16. [16] N. Bourbaki, Intégration, ch. 7-8, Éléments de mathématique, Springer, 2007. Zbl1106.46005MR2333539
  17. [17] N. Bourbaki, Théories spectrales, ch. 1-2, Éléments de mathématique, Springer, 2007. Zbl1106.46004
  18. [18] J.-F. Boutot & H. Carayol, Uniformisation p -adique des courbes de Shimura : les théorèmes de Čerednik et de Drinfel ' d, Astérisque 196–197 (1991), 45–158. Zbl0781.14010MR1141456
  19. [19] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées, Publ. Math. I.H.É.S. 41 (1972), 5–251. Zbl0254.14017MR327923
  20. [20] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. I.H.É.S. 60 (1984), 197–376. Zbl0597.14041
  21. [21] C. Chevalley, Certains schémas de groupes semi-simples. Séminaire Bourbaki, vol. 1960/61, exposé no 219, Collection hors série, SMF 6 (1995), 219–234. Zbl0125.01705
  22. [22] C. Chevalley, Classification des groupes algébriques semi-simples, Collected works 3, Springer, 2005. Zbl1099.01026
  23. [23] P. Deligne, Travaux de Shimura. Séminaire Bourbaki, vol. 1970/71, exposé no 389, Lecture Notes in Math. 244 (1971), 123–165. Zbl0225.14007
  24. [24] M. Demazure, Schémas en groupes réductifs, Bull. Soc. Math. France93 (1965), 369–413. Zbl0163.27402
  25. [25] M. Demazure & P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson, Paris, 1970. Zbl0203.23401
  26. [26] A. Ducros, Variation de la dimension relative en géométrie analytique p -adique, Compos. Math.143 (2007), 1511–1532. Zbl1161.14018
  27. [27] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math.77 (1963), 335–386. Zbl0192.12704
  28. [28] O. Goldman & N. Iwahori, The space of 𝔭 -adic norms, Acta Math.109 (1963), 137–177. Zbl0133.29402
  29. [29] A. Grothendieck, Éléments de géométrie algébrique, chapitres I-IV, Publ. Math. I.H.É.S. 4, 8, etc., 1960–67. Zbl0122.16102
  30. [30] A. Grothendieck, Séminaire de géométrie algébrique du Bois Marie — SGA1. Revêtements étales et groupe fondamental, Documents math. de la S.M.F. 3 (2003). Zbl1039.14001MR2017446
  31. [31] L. Gruson, Théorie de Fredholm p -adique, Bull. Soc. Math. France94 (1966), 67–95. Zbl0149.34702MR226381
  32. [32] Y. Guivarc’h, L. Ji & J. C. Taylor, Compactifications of symmetric spaces, Progress in Math. 156, Birkhäuser, 1998. Zbl1053.31006MR1633171
  33. [33] Y. Guivarc’h & B. Rémy, Group-theoretic compactification of Bruhat-Tits buildings, Ann. Sci. École Norm. Sup.39 (2006), 871–920. Zbl1126.20029MR2316977
  34. [34] M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium Publications 44, Amer. Math. Soc., 1998. Zbl0955.16001MR1632779
  35. [35] E. Landvogt, A compactification of the Bruhat-Tits building, Lecture Notes in Math. 1619, Springer, 1996. Zbl0935.20034MR1441308
  36. [36] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebn. Math. Grenzg. 17, Springer, 1991. Zbl0732.22008MR1090825
  37. [37] G. Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France129 (2001), 169–174. Zbl0992.20032MR1871292
  38. [38] G. Prasad & J.-K. Yu, On finite group actions on reductive groups and buildings, Invent. Math.147 (2002), 545–560. Zbl1020.22003MR1893005
  39. [39] B. Rémy, A. Thuillier & A. Werner, Bruhat-Tits theory from Berkovich’s point of view II. Satake compactifications of buildings, preprint arXiv:0907.3264. Zbl1241.51003
  40. [40] G. Rousseau, Immeubles des groupes réductifs sur les corps locaux, Thèse de doctorat, Université Paris XI, Orsay, 1977, Publications Mathématiques d’Orsay, no 221-77.68. Zbl0412.22006MR491992
  41. [41] G. Rousseau, Euclidean buildings, Séminaires et congrès18 (2008), 77–118. Zbl1206.51012MR2655310
  42. [42] I. Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math.71 (1960), 77–110. Zbl0094.34603MR118775
  43. [43] T. A. Springer, Linear algebraic groups, second éd., Progress in Math. 9, Birkhäuser, 1998. Zbl0453.14022MR1642713
  44. [44] R. Steinberg, Lectures on Chevalley groups, lecture notes, Yale University, 1968. Zbl1196.22001MR466335
  45. [45] J. Tits, On buildings and their applications, in Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canad. Math. Congress, Montréal, Québec, 1975, 209–220. Zbl0336.57009MR439945
  46. [46] J. Tits, Reductive groups over local fields, in Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., 1979, 29–69. Zbl0415.20035MR546588
  47. [47] J. Tits, Immeubles de type affine, in Buildings and the geometry of diagrams (Como, 1984), Lecture Notes in Math. 1181, Springer, 1986, 159–190. Zbl0611.20026MR843391
  48. [48] W. C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Math. 66, Springer, 1979. Zbl0442.14017MR547117
  49. [49] A. Werner, Compactification of the Bruhat-Tits building of PGL by seminorms, Math. Z.248 (2004), 511–526. Zbl1121.20024MR2097372
  50. [50] A. Werner, Compactifications of Bruhat-Tits buildings associated to linear representations, Proc. Lond. Math. Soc.95 (2007), 497–518. Zbl1131.20019MR2352569

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.