Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings
Bertrand Rémy; Amaury Thuillier; Annette Werner
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 3, page 461-554
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topRémy, Bertrand, Thuillier, Amaury, and Werner, Annette. "Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings." Annales scientifiques de l'École Normale Supérieure 43.3 (2010): 461-554. <http://eudml.org/doc/272160>.
@article{Rémy2010,
abstract = {We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group $\mathrm \{G\}$ over a suitable non-Archimedean field $k$ we define a map from the Bruhat-Tits building $\mathcal \{B\}(\mathrm \{G\},k)$ to the Berkovich analytic space $\mathrm \{G\}^\{\rm an\}$ associated with $\mathrm \{G\}$. Composing this map with the projection of $\mathrm \{G\}^\{\rm an\}$ to its flag varieties, we define a family of compactifications of $\mathcal \{B\}(\mathrm \{G\},k)$. This generalizes results by Berkovich in the case of split groups.
Moreover, we show that the boundary strata of the compactified buildings are precisely the Bruhat-Tits buildings associated with a certain class of parabolics. We also investigate the stabilizers of boundary points and prove a mixed Bruhat decomposition theorem for them.},
author = {Rémy, Bertrand, Thuillier, Amaury, Werner, Annette},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic group; local field; Berkovich geometry; Bruhat-Tits building; compactification},
language = {eng},
number = {3},
pages = {461-554},
publisher = {Société mathématique de France},
title = {Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings},
url = {http://eudml.org/doc/272160},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Rémy, Bertrand
AU - Thuillier, Amaury
AU - Werner, Annette
TI - Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 3
SP - 461
EP - 554
AB - We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group $\mathrm {G}$ over a suitable non-Archimedean field $k$ we define a map from the Bruhat-Tits building $\mathcal {B}(\mathrm {G},k)$ to the Berkovich analytic space $\mathrm {G}^{\rm an}$ associated with $\mathrm {G}$. Composing this map with the projection of $\mathrm {G}^{\rm an}$ to its flag varieties, we define a family of compactifications of $\mathcal {B}(\mathrm {G},k)$. This generalizes results by Berkovich in the case of split groups.
Moreover, we show that the boundary strata of the compactified buildings are precisely the Bruhat-Tits buildings associated with a certain class of parabolics. We also investigate the stabilizers of boundary points and prove a mixed Bruhat decomposition theorem for them.
LA - eng
KW - algebraic group; local field; Berkovich geometry; Bruhat-Tits building; compactification
UR - http://eudml.org/doc/272160
ER -
References
top- [1] Schémas en groupes. Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA3) (M. Demazure & A. Grothendieck, éds.), Lecture Notes in Math. 151–153, 1970. Zbl0207.51401
- [2] P. Abramenko & K. S. Brown, Buildings. Theory and applications, Graduate Texts in Math. 248, Springer, 2008. Zbl1214.20033MR2439729
- [3] W. L. J. Baily & A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math.84 (1966), 442–528. Zbl0154.08602MR216035
- [4] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs 33, Amer. Math. Soc., 1990. Zbl0715.14013MR1070709
- [5] V. G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. I.H.É.S. 78 (1993), 5–161. Zbl0804.32019MR1259429
- [6] V. G. Berkovich, Vanishing cycles for formal schemes, Invent. Math.115 (1994), 539–571. Zbl0791.14008MR1262943
- [7] V. G. Berkovich, The automorphism group of the Drinfelʼd half-plane, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), 1127–1132. Zbl0856.14007MR1360770
- [8] V. G. Berkovich, -adic analytic spaces, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), extra vol. II, 1998, 141–151. Zbl0949.14010MR1648064
- [9] A. Borel, Linear algebraic groups, second éd., Graduate Texts in Math. 126, Springer, 1991. Zbl0726.20030MR1102012
- [10] A. Borel & L. Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory & Applications, Birkhäuser, 2006. Zbl1100.22001MR2189882
- [11] A. Borel & J-P. Serre, Corners and arithmetic groups, Comment. Math. Helv.48 (1973), 436–491. Zbl0274.22011MR387495
- [12] A. Borel & J. Tits, Groupes réductifs, Publ. Math. I.H.É.S. 27 (1965), 55–150. Zbl0145.17402MR207712
- [13] S. Bosch, U. Güntzer & R. Remmert, Non-Archimedean analysis, Grund. Math. Wiss. 261, Springer, 1984. Zbl0539.14017MR746961
- [14] S. Bosch, W. Lütkebohmert & M. Raynaud, Néron models, Ergebnisse Math. Grenzg. 21, Springer, 1990. Zbl0705.14001
- [15] N. Bourbaki, Algèbre commutative, ch. 5-6, Éléments de mathématique, Springer, 2007. Zbl1107.13002
- [16] N. Bourbaki, Intégration, ch. 7-8, Éléments de mathématique, Springer, 2007. Zbl1106.46005MR2333539
- [17] N. Bourbaki, Théories spectrales, ch. 1-2, Éléments de mathématique, Springer, 2007. Zbl1106.46004
- [18] J.-F. Boutot & H. Carayol, Uniformisation -adique des courbes de Shimura : les théorèmes de Čerednik et de Drinfeld, Astérisque 196–197 (1991), 45–158. Zbl0781.14010MR1141456
- [19] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées, Publ. Math. I.H.É.S. 41 (1972), 5–251. Zbl0254.14017MR327923
- [20] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. I.H.É.S. 60 (1984), 197–376. Zbl0597.14041
- [21] C. Chevalley, Certains schémas de groupes semi-simples. Séminaire Bourbaki, vol. 1960/61, exposé no 219, Collection hors série, SMF 6 (1995), 219–234. Zbl0125.01705
- [22] C. Chevalley, Classification des groupes algébriques semi-simples, Collected works 3, Springer, 2005. Zbl1099.01026
- [23] P. Deligne, Travaux de Shimura. Séminaire Bourbaki, vol. 1970/71, exposé no 389, Lecture Notes in Math. 244 (1971), 123–165. Zbl0225.14007
- [24] M. Demazure, Schémas en groupes réductifs, Bull. Soc. Math. France93 (1965), 369–413. Zbl0163.27402
- [25] M. Demazure & P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson, Paris, 1970. Zbl0203.23401
- [26] A. Ducros, Variation de la dimension relative en géométrie analytique -adique, Compos. Math.143 (2007), 1511–1532. Zbl1161.14018
- [27] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math.77 (1963), 335–386. Zbl0192.12704
- [28] O. Goldman & N. Iwahori, The space of -adic norms, Acta Math.109 (1963), 137–177. Zbl0133.29402
- [29] A. Grothendieck, Éléments de géométrie algébrique, chapitres I-IV, Publ. Math. I.H.É.S. 4, 8, etc., 1960–67. Zbl0122.16102
- [30] A. Grothendieck, Séminaire de géométrie algébrique du Bois Marie — SGA1. Revêtements étales et groupe fondamental, Documents math. de la S.M.F. 3 (2003). Zbl1039.14001MR2017446
- [31] L. Gruson, Théorie de Fredholm -adique, Bull. Soc. Math. France94 (1966), 67–95. Zbl0149.34702MR226381
- [32] Y. Guivarc’h, L. Ji & J. C. Taylor, Compactifications of symmetric spaces, Progress in Math. 156, Birkhäuser, 1998. Zbl1053.31006MR1633171
- [33] Y. Guivarc’h & B. Rémy, Group-theoretic compactification of Bruhat-Tits buildings, Ann. Sci. École Norm. Sup.39 (2006), 871–920. Zbl1126.20029MR2316977
- [34] M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium Publications 44, Amer. Math. Soc., 1998. Zbl0955.16001MR1632779
- [35] E. Landvogt, A compactification of the Bruhat-Tits building, Lecture Notes in Math. 1619, Springer, 1996. Zbl0935.20034MR1441308
- [36] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebn. Math. Grenzg. 17, Springer, 1991. Zbl0732.22008MR1090825
- [37] G. Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France129 (2001), 169–174. Zbl0992.20032MR1871292
- [38] G. Prasad & J.-K. Yu, On finite group actions on reductive groups and buildings, Invent. Math.147 (2002), 545–560. Zbl1020.22003MR1893005
- [39] B. Rémy, A. Thuillier & A. Werner, Bruhat-Tits theory from Berkovich’s point of view II. Satake compactifications of buildings, preprint arXiv:0907.3264. Zbl1241.51003
- [40] G. Rousseau, Immeubles des groupes réductifs sur les corps locaux, Thèse de doctorat, Université Paris XI, Orsay, 1977, Publications Mathématiques d’Orsay, no 221-77.68. Zbl0412.22006MR491992
- [41] G. Rousseau, Euclidean buildings, Séminaires et congrès18 (2008), 77–118. Zbl1206.51012MR2655310
- [42] I. Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math.71 (1960), 77–110. Zbl0094.34603MR118775
- [43] T. A. Springer, Linear algebraic groups, second éd., Progress in Math. 9, Birkhäuser, 1998. Zbl0453.14022MR1642713
- [44] R. Steinberg, Lectures on Chevalley groups, lecture notes, Yale University, 1968. Zbl1196.22001MR466335
- [45] J. Tits, On buildings and their applications, in Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canad. Math. Congress, Montréal, Québec, 1975, 209–220. Zbl0336.57009MR439945
- [46] J. Tits, Reductive groups over local fields, in Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., 1979, 29–69. Zbl0415.20035MR546588
- [47] J. Tits, Immeubles de type affine, in Buildings and the geometry of diagrams (Como, 1984), Lecture Notes in Math. 1181, Springer, 1986, 159–190. Zbl0611.20026MR843391
- [48] W. C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Math. 66, Springer, 1979. Zbl0442.14017MR547117
- [49] A. Werner, Compactification of the Bruhat-Tits building of PGL by seminorms, Math. Z.248 (2004), 511–526. Zbl1121.20024MR2097372
- [50] A. Werner, Compactifications of Bruhat-Tits buildings associated to linear representations, Proc. Lond. Math. Soc.95 (2007), 497–518. Zbl1131.20019MR2352569
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.