The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a characterization of the pairs of weights (v,w), with w in the class of Muckenhoupt, for which the fractional maximal function is a bounded operator from to when 1 < p ≤ q < ∞ and X is a space of homogeneous type.
Let φ: R → [0,∞) an integrable function such that φχ = 0 and φ is decreasing in (0,∞). Let τf(x) = f(x-h), with h ∈ R {0} and f(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mf(x) = sup|f| * [τφ](x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.
Download Results (CSV)