Diophantine -tuples and elliptic curves
A Diophantine -tuple is a set of positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form , where , is a Diophantine triple. In particular, we consider the elliptic curve defined by the equation where and , denotes the -th Fibonacci number. We prove that if the rank of is equal to one, or , then all integer points on are given by