An existence theorem for an implicit integral equation with discontinuous right-hand side.
Some general multiplicity results for critical points of parameterized functionals on reflexive Banach spaces are established. In particular, one of them improves some aspects of a recent result by B. Ricceri. Applications to boundary value problems are also given.
We establish two existence results for elliptic boundary-value problems with discontinuous nonlinearities. One of them concerns implicit elliptic equations of the form ψ(-Δu) = f(x,u). We emphasize that our assumptions permit the nonlinear term f to be discontinuous with respect to the second variable at each point.
In this paper we shall establish a result concerning the covering dimension of a set of the type , where , are two multifunctions from into and , are real Banach spaces. Moreover, some applications to the differential inclusions will be given.
We present two results on existence of infinitely many positive solutions to the Neumann problem ⎧ in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, μ > 0, with and f: Ω × ℝ → ℝ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.
Let , , and . We study, for , the behavior of positive solutions of the problem in , . In particular, we give a positive answer to an open question formulated in a recent paper of the first author.
We consider a multifunction , where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.
We establish an existence theorem for a Dirichlet problem with homogeneous boundary conditions by using a general variational principle of Ricceri.
We deal with the implicit integral equation where and where , and . We prove an existence theorem for solutions where the contituity of with respect to the second variable is not assumed.
Page 1