C1,1 vector optimization problems and Riemann derivatives
The present paper studies the following constrained vector optimization problem: , , , where , are locally Lipschitz functions, is function, and and are closed convex cones. Two types of solutions are important for the consideration, namely -minimizers (weakly efficient points) and -minimizers (isolated minimizers of order 1). In terms of the Dini directional derivative first-order necessary conditions for a point to be a -minimizer and first-order sufficient conditions for ...
Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem , , are given. These conditions work with arbitrary functions , but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It...
Page 1