Locally Lipschitz vector optimization with inequality and equality constraints
Ivan Ginchev; Angelo Guerraggio; Matteo Rocca
Applications of Mathematics (2010)
- Volume: 55, Issue: 1, page 77-88
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGinchev, Ivan, Guerraggio, Angelo, and Rocca, Matteo. "Locally Lipschitz vector optimization with inequality and equality constraints." Applications of Mathematics 55.1 (2010): 77-88. <http://eudml.org/doc/37839>.
@article{Ginchev2010,
abstract = {The present paper studies the following constrained vector optimization problem: $\min _Cf(x)$, $g(x)\in -K$, $h(x)=0$, where $f\colon \mathbb \{R\}^n\rightarrow \mathbb \{R\}^m$, $g\colon \mathbb \{R\}^n\rightarrow \mathbb \{R\}^p$ are locally Lipschitz functions, $h\colon \mathbb \{R\}^n\rightarrow \mathbb \{R\}^q$ is $C^1$ function, and $C\subset \mathbb \{R\}^m$ and $K\subset \mathbb \{R\}^p$ are closed convex cones. Two types of solutions are important for the consideration, namely $w$-minimizers (weakly efficient points) and $i$-minimizers (isolated minimizers of order 1). In terms of the Dini directional derivative first-order necessary conditions for a point $x^0$ to be a $w$-minimizer and first-order sufficient conditions for $x^0$ to be an $i$-minimizer are obtained. Their effectiveness is illustrated on an example. A comparison with some known results is done.},
author = {Ginchev, Ivan, Guerraggio, Angelo, Rocca, Matteo},
journal = {Applications of Mathematics},
keywords = {vector optimization; locally Lipschitz optimization; Dini derivatives; optimality conditions; vector optimization; locally Lipschitz optimization; Dini derivative; optimality condition},
language = {eng},
number = {1},
pages = {77-88},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally Lipschitz vector optimization with inequality and equality constraints},
url = {http://eudml.org/doc/37839},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Ginchev, Ivan
AU - Guerraggio, Angelo
AU - Rocca, Matteo
TI - Locally Lipschitz vector optimization with inequality and equality constraints
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 77
EP - 88
AB - The present paper studies the following constrained vector optimization problem: $\min _Cf(x)$, $g(x)\in -K$, $h(x)=0$, where $f\colon \mathbb {R}^n\rightarrow \mathbb {R}^m$, $g\colon \mathbb {R}^n\rightarrow \mathbb {R}^p$ are locally Lipschitz functions, $h\colon \mathbb {R}^n\rightarrow \mathbb {R}^q$ is $C^1$ function, and $C\subset \mathbb {R}^m$ and $K\subset \mathbb {R}^p$ are closed convex cones. Two types of solutions are important for the consideration, namely $w$-minimizers (weakly efficient points) and $i$-minimizers (isolated minimizers of order 1). In terms of the Dini directional derivative first-order necessary conditions for a point $x^0$ to be a $w$-minimizer and first-order sufficient conditions for $x^0$ to be an $i$-minimizer are obtained. Their effectiveness is illustrated on an example. A comparison with some known results is done.
LA - eng
KW - vector optimization; locally Lipschitz optimization; Dini derivatives; optimality conditions; vector optimization; locally Lipschitz optimization; Dini derivative; optimality condition
UR - http://eudml.org/doc/37839
ER -
References
top- Aghezzaf, B., Hachimi, M., 10.1023/A:1021834210437, J. Optim. Theory Appl. 102 (1999), 37-50. (1999) Zbl1039.90062MR1702841DOI10.1023/A:1021834210437
- Amahroq, T., Taa, A., 10.1080/02331939708844332, Optimization 41 (1997), 159-172. (1997) Zbl0882.90114MR1459915DOI10.1080/02331939708844332
- Antczak, T., Kisiel, K., Strict minimizers of order in nonsmooth optimization problems, Commentat. Math. Univ. Carol. 47 (2006), 213-232. (2006) Zbl1150.90007MR2241528
- Auslender, A., 10.1137/0322017, SIAM J. Control Optim. 22 (1984), 239-254. (1984) Zbl0538.49020MR0732426DOI10.1137/0322017
- Bednařík, D., Pastor, K., 10.1007/s10107-007-0094-8, Math. Program. 113 (2008), 283-298. (2008) MR2375484DOI10.1007/s10107-007-0094-8
- Ben-Tal, A., Zowe, J., 10.1007/BFb0120982, Math. Program. Study 18 (1982), 39-76. (1982) Zbl0494.49020MR0669725DOI10.1007/BFb0120982
- Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons New York (1983). (1983) Zbl0582.49001MR0709590
- Craven, B. D., 10.1080/01630568908816290, Numer. Funct. Anal. Optim. 10 (1989), 49-64. (1989) Zbl0645.90076MR0978802DOI10.1080/01630568908816290
- Ginchev, I., Guerraggio, A., Rocca, M., First-order conditions for constrained vector optimization, In: Variational Analysis and Applications. Proc. 38th Conference of the School of Mathematics ``G. Stampacchia'' in Memory of G. Stampacchia and J.-L. Lions, Erice, Italy, June 20--July 1, 2003 F. Giannessi, A. Maugeri Springer New York (2005), 427-450. (2005) MR2159985
- Ginchev, I., Guerraggio, A., Rocca, M., 10.1007/s10107-005-0621-4, Math. Program., Ser. B 104 (2005), 389-405. (2005) MR2179243DOI10.1007/s10107-005-0621-4
- Ginchev, I., Guerraggio, A., Rocca, M., 10.1007/s10492-006-0002-1, Appl. Math. 51 (2006), 5-36. (2006) Zbl1164.90399MR2197320DOI10.1007/s10492-006-0002-1
- Ginchev, I., Guerraggio, A., Rocca, M., Second-order conditions in vector optimization with inequality and equality constraints, In: Recent Advances in Optimization. Proc. 12th French-German-Spanish Conference on Optimization, Avignon, France, September 20-24, 2004. Lecture Notes in Econom. and Math. Systems, Vol. 563 A. Seeger Springer Berlin (2006), 29-44. (2006) MR2191149
- Li, Z., 10.1006/jmaa.1996.0239, J. Math. Anal. Appl. 201 (1996), 35-43. (1996) Zbl0851.90105MR1397884DOI10.1006/jmaa.1996.0239
- Liu, L., Neittaanmäki, P., Křížek, M., 10.1023/A:1022272728208, Appl. Math. 45 (2000), 381-397. (2000) MR1777017DOI10.1023/A:1022272728208
- Malivert, C., First and second order optimality conditions in vector optimization, Ann. Sci. Math. Qué. 14 (1990), 65-79. (1990) Zbl0722.90065MR1070607
- Maruşciac, I., On Fritz John type optimality criterion in multi-objective optimization, Anal. Numér. Théor. Approximation 11 (1982), 109-114. (1982) MR0692476
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.