The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

A note on the Cahn-Hilliard equation in H 1 ( N ) involving critical exponent

Jan W. CholewaAníbal Rodríguez-Bernal — 2014

Mathematica Bohemica

We consider the Cahn-Hilliard equation in H 1 ( N ) with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as | u | and logistic type nonlinearities. In both situations we prove the H 2 ( N ) -bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012).

Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena

José M. ArrietaAnibal Rodriguez-BernalPhilippe Souplet — 2004

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions u : either the space derivative u x blows up in finite time (with u itself remaining bounded), or u is global and converges in C 1 norm to the unique steady state. The main difficulty is to prove C 1 boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of...

Page 1

Download Results (CSV)