The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
L’indice d’une algèbre de Lie algébrique complexe est la codimension minimale de ses orbites coadjointes. Si est semi-simple, son indice, , est égal à son rang, . Le but de cet article est d’établir une formule générale pour l’indice de pour nilpotent, où est le normalisateur dans du centralisateur de . Plus précisément, on obtient le résultat suivant, conjecturé par D. Panyushev :
où est le centre de . Panyushev obtient l’inégalité dans Panyushev 2003...
We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo,...
Download Results (CSV)