Kinetic formulation for heterogeneous scalar conservation laws
Le but de cette note est de décrire mathématiquement l’effet d’un forçage surfacique sur des fluides incompressibles et homogènes en rotation rapide. Cette question surgit naturellement dans des modèles de fluides géophysiques : en effet, l’évolution temporelle des courants océaniques dans le référentiel terrestre en rotation est régie par les équations de Navier-Stokes-Coriolis, et l’action du vent est décrite par une condition de Neumann non homogène à la surface de l’océan. L’un des enjeux de...
This article investigates the long-time behaviour of parabolic scalar conservation laws of the type , where and the flux is periodic in . More specifically, we consider the case when the initial data is an disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in norm like a self-similar profile for large times. The proof uses a time and space change of variables which is...
Our concern is the computation of optimal shapes in problems involving (−). We focus on the energy (Ω) associated to the solution of the basic Dirichlet problem ( − ) = 1 in Ω, = 0 in Ω. We show that regular minimizers Ω of this energy under a volume constraint are disks. Our proof goes through the explicit computation of the shape derivative (that seems to be completely new in the fractional context), and a refined adaptation of the moving plane...
Cet article est le résumé d’un exposé donné au séminaire Laurent Schwartz en décembre 2014. Le but est de donner une preuve mathématique du phénomène de séparation de couche limite dans un fluide peu visqueux au voisinage d’un obstacle. Pour cela, on considère la solution de l’équation de Prandtl stationnaire, en présence d’un gradient de pression adverse. On montre que la dérivée normale de la vitesse tangentielle au voisinage de la paroi s’annule pour certaines données initiales, ce qui caractérise...
In this paper, we review recent results on wall laws for viscous fluids near rough
surfaces, of small amplitude and wavelength
Page 1