In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.
Consideriamo un corpo sottomesso ad una forza esterna data e del quale vogliamo controllare lo spostamento. Cerchiamo un rinforzo per minimizzare un funzionale che dipende dallo spostamento del corpo. L'insieme delle configurazioni ammissibili è un insieme di funzioni caratteristiche di sottodomini (un rinforzo ammissibile è un sottodominio con una rigidezza uguale ad uno) di volume prescritto. In tal caso, si ha bisogno di una versione rilassata del problema di ottimizzazione e si cerca una densità...
In this paper, we are interested in finding the optimal shape
of a magnet. The criterion to maximize is the jump of the
electromagnetic field between two different configurations.
We prove existence of an optimal shape into a natural class
of domains. We introduce a quasi-Newton type algorithm which
moves the boundary. This method is very efficient to improve
an initial shape. We give some numerical results.
One may produce the th harmonic of a string of length by
applying the 'correct touch' at the node
during a simultaneous pluck or bow. This notion was
made precise by a model of Bamberger, Rauch and Taylor. Their 'touch' is
a damper of magnitude concentrated at .
The 'correct touch' is that for which the modes, that do not vanish
at , are maximally damped. We here examine the associated spectral
problem. We find the spectrum to be periodic and determined by a polynomial
of degree . We...
Download Results (CSV)