The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a cuspidal newform with complex multiplication (CM) and let be an odd prime at which is non-ordinary. We construct admissible -adic -functions for the symmetric powers of , thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus -adic -functions and prove an analogue of Pollack’s decomposition of the admissible -adic -functions....
Let be an elliptic curve over with good supersingular reduction at a prime and . We generalise the definition of Kobayashi’s plus/minus Selmer groups over to -adic Lie extensions of containing , using the theory of -modules and Berger’s comparison isomorphisms. We show that these Selmer groups can be equally described using Kobayashi’s conditions via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual Selmer groups in the ordinary case....
Download Results (CSV)