Signed Selmer groups over p -adic Lie extensions

Antonio Lei[1]; Sarah Livia Zerbes[2]

  • [1] School of Mathematical Sciences Monash University Clayton, VIC 3800 Australia Since December 2011 : Department of Mathematics and Statistics Burnside Hall McGill University Montreal QC Canada H3A 2K6
  • [2] Department of Mathematics Harrison Building University of Exeter Exeter EX4 4QF, UK

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 377-403
  • ISSN: 1246-7405

Abstract

top
Let E be an elliptic curve over with good supersingular reduction at a prime p 3 and a p = 0 . We generalise the definition of Kobayashi’s plus/minus Selmer groups over ( μ p ) to p -adic Lie extensions K of containing ( μ p ) , using the theory of ( ϕ , Γ ) -modules and Berger’s comparison isomorphisms. We show that these Selmer groups can be equally described using Kobayashi’s conditions via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual Selmer groups in the ordinary case.

How to cite

top

Lei, Antonio, and Zerbes, Sarah Livia. "Signed Selmer groups over $p$-adic Lie extensions." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 377-403. <http://eudml.org/doc/251038>.

@article{Lei2012,
abstract = {Let $E$ be an elliptic curve over $\mathbb\{Q\}$ with good supersingular reduction at a prime $p\ge 3$ and $a_p=0$. We generalise the definition of Kobayashi’s plus/minus Selmer groups over $\mathbb\{Q\}(\mu _\{p^\infty \})$ to $p$-adic Lie extensions $K_\infty $ of $\mathbb\{Q\}$ containing $\mathbb\{Q\}(\mu _\{p^\infty \})$, using the theory of $(\varphi ,\Gamma )$-modules and Berger’s comparison isomorphisms. We show that these Selmer groups can be equally described using Kobayashi’s conditions via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual Selmer groups in the ordinary case.},
affiliation = {School of Mathematical Sciences Monash University Clayton, VIC 3800 Australia Since December 2011 : Department of Mathematics and Statistics Burnside Hall McGill University Montreal QC Canada H3A 2K6; Department of Mathematics Harrison Building University of Exeter Exeter EX4 4QF, UK},
author = {Lei, Antonio, Zerbes, Sarah Livia},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Selmer groups, –adic Lie extensions; elliptic curves; good reduction; supersingular reduction},
language = {eng},
month = {6},
number = {2},
pages = {377-403},
publisher = {Société Arithmétique de Bordeaux},
title = {Signed Selmer groups over $p$-adic Lie extensions},
url = {http://eudml.org/doc/251038},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Lei, Antonio
AU - Zerbes, Sarah Livia
TI - Signed Selmer groups over $p$-adic Lie extensions
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 377
EP - 403
AB - Let $E$ be an elliptic curve over $\mathbb{Q}$ with good supersingular reduction at a prime $p\ge 3$ and $a_p=0$. We generalise the definition of Kobayashi’s plus/minus Selmer groups over $\mathbb{Q}(\mu _{p^\infty })$ to $p$-adic Lie extensions $K_\infty $ of $\mathbb{Q}$ containing $\mathbb{Q}(\mu _{p^\infty })$, using the theory of $(\varphi ,\Gamma )$-modules and Berger’s comparison isomorphisms. We show that these Selmer groups can be equally described using Kobayashi’s conditions via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual Selmer groups in the ordinary case.
LA - eng
KW - Selmer groups, –adic Lie extensions; elliptic curves; good reduction; supersingular reduction
UR - http://eudml.org/doc/251038
ER -

References

top
  1. Laurent Berger, Représentations p -adiques et équations différentielles. Invent. Math. 148 (2002), no. 2, 219–284. Zbl1113.14016MR1906150
  2. Laurent Berger, Bloch and Kato’s exponential map: three explicit formulas. Doc. Math. Extra Vol. 3 (2003), 99–129, Kazuya Kato’s fiftieth birthday. Zbl1064.11077MR2046596
  3. Laurent Berger, Limites de représentations cristallines. Compos. Math. 140 (2004), no. 6, 1473–1498. Zbl1071.11067MR2098398
  4. Laurent Berger, Représentations de de Rham et normes universelles. Bull. Soc. Math. France 133 (2005), no. 4, 601–618. Zbl1122.11036MR2233697
  5. Spencer Bloch and Kazuya Kato, L -functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I (Cartier et al, ed.), Progr. Math., vol. 86, Birkhäuser, Boston, MA, 1990, pp. 333–400. Zbl0768.14001MR1086888
  6. Frédéric Cherbonnier and Pierre Colmez, Représentations p -adiques surconvergentes. Invent. Math. 133 (1998), no. 3, 581–611. Zbl0928.11051MR1645070
  7. Frédéric Cherbonnier and Pierre Colmez, Théorie d’Iwasawa des représentations p -adiques d’un corps local. J. Amer. Math. Soc. 12 (1999), no. 1, 241–268. Zbl0933.11056MR1626273
  8. John Coates and Ralph Greenberg, Kummer theory for abelian varieties over local fields. Invent. Math. 124 (1996), no. 1-3, 129–174. Zbl0858.11032MR1369413
  9. John Coates and Ramdorai Sujatha, Galois cohomology of elliptic curves. Tata Institute of Fundamental Research Lectures on Mathematics, 88, Published by Narosa Publishing House, New Delhi, 2000. Zbl1213.11115MR1759312
  10. John Coates and Susan Howson, Euler characteristics and elliptic curves. II, J. Math. Soc. Japan 53 (2001), no. 1, 175–235. Zbl1046.11079MR1800527
  11. John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha, and Otmar Venjakob, The GL 2 main conjecture for elliptic curves without complex multiplication. Pub. Math. IHÉS 101 (2005), 163–208. Zbl1108.11081MR2217048
  12. Jean-Marc Fontaine, Le corps des périodes p -adiques (Bures-sur-Yvette, 1988). Astérisque No. 223 (1994), 59–111. Zbl0940.14012MR1293971
  13. Laurent Herr, Sur la cohomologie galoisienne des corps p -adiques. Bull. Soc. Math. France 126 (1998), no. 4, 563–600. Zbl0967.11050MR1693457
  14. Shinichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152 (2003), no. 1, 1–36. Zbl1047.11105MR1965358
  15. Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Wach modules and Iwasawa theory for modular forms. Asian J. Math. 14 (2010), no. 475–528. Zbl1281.11095MR2774276
  16. Bernadette Perrin-Riou, Fonctions L p -adiques des représentations p -adiques. Asté- risque No. 229 (1995), 1–198. Zbl0845.11040MR1403940
  17. Bernadette Perrin-Riou, Représentations p -adiques et normes universelles. I. Le cas cristallin. J. Amer. Math. Soc. 13 (2000), no. 3, 533–551 (electronic). Zbl1024.11069MR1758753
  18. Nathalie Wach, Représentations p -adiques potentiellement cristallines. Bull. Soc. Math. France 124 (1996), no. 3, 375–400. Zbl0887.11048MR1415732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.