Signed Selmer groups over -adic Lie extensions
Antonio Lei[1]; Sarah Livia Zerbes[2]
- [1] School of Mathematical Sciences Monash University Clayton, VIC 3800 Australia Since December 2011 : Department of Mathematics and Statistics Burnside Hall McGill University Montreal QC Canada H3A 2K6
- [2] Department of Mathematics Harrison Building University of Exeter Exeter EX4 4QF, UK
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 377-403
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLei, Antonio, and Zerbes, Sarah Livia. "Signed Selmer groups over $p$-adic Lie extensions." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 377-403. <http://eudml.org/doc/251038>.
@article{Lei2012,
abstract = {Let $E$ be an elliptic curve over $\mathbb\{Q\}$ with good supersingular reduction at a prime $p\ge 3$ and $a_p=0$. We generalise the definition of Kobayashi’s plus/minus Selmer groups over $\mathbb\{Q\}(\mu _\{p^\infty \})$ to $p$-adic Lie extensions $K_\infty $ of $\mathbb\{Q\}$ containing $\mathbb\{Q\}(\mu _\{p^\infty \})$, using the theory of $(\varphi ,\Gamma )$-modules and Berger’s comparison isomorphisms. We show that these Selmer groups can be equally described using Kobayashi’s conditions via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual Selmer groups in the ordinary case.},
affiliation = {School of Mathematical Sciences Monash University Clayton, VIC 3800 Australia Since December 2011 : Department of Mathematics and Statistics Burnside Hall McGill University Montreal QC Canada H3A 2K6; Department of Mathematics Harrison Building University of Exeter Exeter EX4 4QF, UK},
author = {Lei, Antonio, Zerbes, Sarah Livia},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Selmer groups, –adic Lie extensions; elliptic curves; good reduction; supersingular reduction},
language = {eng},
month = {6},
number = {2},
pages = {377-403},
publisher = {Société Arithmétique de Bordeaux},
title = {Signed Selmer groups over $p$-adic Lie extensions},
url = {http://eudml.org/doc/251038},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Lei, Antonio
AU - Zerbes, Sarah Livia
TI - Signed Selmer groups over $p$-adic Lie extensions
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 377
EP - 403
AB - Let $E$ be an elliptic curve over $\mathbb{Q}$ with good supersingular reduction at a prime $p\ge 3$ and $a_p=0$. We generalise the definition of Kobayashi’s plus/minus Selmer groups over $\mathbb{Q}(\mu _{p^\infty })$ to $p$-adic Lie extensions $K_\infty $ of $\mathbb{Q}$ containing $\mathbb{Q}(\mu _{p^\infty })$, using the theory of $(\varphi ,\Gamma )$-modules and Berger’s comparison isomorphisms. We show that these Selmer groups can be equally described using Kobayashi’s conditions via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual Selmer groups in the ordinary case.
LA - eng
KW - Selmer groups, –adic Lie extensions; elliptic curves; good reduction; supersingular reduction
UR - http://eudml.org/doc/251038
ER -
References
top- Laurent Berger, Représentations -adiques et équations différentielles. Invent. Math. 148 (2002), no. 2, 219–284. Zbl1113.14016MR1906150
- Laurent Berger, Bloch and Kato’s exponential map: three explicit formulas. Doc. Math. Extra Vol. 3 (2003), 99–129, Kazuya Kato’s fiftieth birthday. Zbl1064.11077MR2046596
- Laurent Berger, Limites de représentations cristallines. Compos. Math. 140 (2004), no. 6, 1473–1498. Zbl1071.11067MR2098398
- Laurent Berger, Représentations de de Rham et normes universelles. Bull. Soc. Math. France 133 (2005), no. 4, 601–618. Zbl1122.11036MR2233697
- Spencer Bloch and Kazuya Kato, -functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I (Cartier et al, ed.), Progr. Math., vol. 86, Birkhäuser, Boston, MA, 1990, pp. 333–400. Zbl0768.14001MR1086888
- Frédéric Cherbonnier and Pierre Colmez, Représentations -adiques surconvergentes. Invent. Math. 133 (1998), no. 3, 581–611. Zbl0928.11051MR1645070
- Frédéric Cherbonnier and Pierre Colmez, Théorie d’Iwasawa des représentations -adiques d’un corps local. J. Amer. Math. Soc. 12 (1999), no. 1, 241–268. Zbl0933.11056MR1626273
- John Coates and Ralph Greenberg, Kummer theory for abelian varieties over local fields. Invent. Math. 124 (1996), no. 1-3, 129–174. Zbl0858.11032MR1369413
- John Coates and Ramdorai Sujatha, Galois cohomology of elliptic curves. Tata Institute of Fundamental Research Lectures on Mathematics, 88, Published by Narosa Publishing House, New Delhi, 2000. Zbl1213.11115MR1759312
- John Coates and Susan Howson, Euler characteristics and elliptic curves. II, J. Math. Soc. Japan 53 (2001), no. 1, 175–235. Zbl1046.11079MR1800527
- John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha, and Otmar Venjakob, The main conjecture for elliptic curves without complex multiplication. Pub. Math. IHÉS 101 (2005), 163–208. Zbl1108.11081MR2217048
- Jean-Marc Fontaine, Le corps des périodes -adiques (Bures-sur-Yvette, 1988). Astérisque No. 223 (1994), 59–111. Zbl0940.14012MR1293971
- Laurent Herr, Sur la cohomologie galoisienne des corps -adiques. Bull. Soc. Math. France 126 (1998), no. 4, 563–600. Zbl0967.11050MR1693457
- Shinichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152 (2003), no. 1, 1–36. Zbl1047.11105MR1965358
- Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Wach modules and Iwasawa theory for modular forms. Asian J. Math. 14 (2010), no. 475–528. Zbl1281.11095MR2774276
- Bernadette Perrin-Riou, Fonctions -adiques des représentations -adiques. Asté- risque No. 229 (1995), 1–198. Zbl0845.11040MR1403940
- Bernadette Perrin-Riou, Représentations -adiques et normes universelles. I. Le cas cristallin. J. Amer. Math. Soc. 13 (2000), no. 3, 533–551 (electronic). Zbl1024.11069MR1758753
- Nathalie Wach, Représentations -adiques potentiellement cristallines. Bull. Soc. Math. France 124 (1996), no. 3, 375–400. Zbl0887.11048MR1415732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.