The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We construct an upper bound for the following family of functionals , which arises in the study of micromagnetics:
Here is a bounded domain in , (corresponding to the magnetization) and , the demagnetizing field created by , is given by
where is the extension of by in . Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.
We prove an upper bound for the Aviles–Giga problem, which involves the minimization of the energy over , where
is a small parameter. Given such that and a.e., we construct a family satisfying: in and as goes to 0.
In this paper we construct upper bounds for families of
functionals of the form
where Δ
= div {
u}. Particular cases of such functionals arise in
Micromagnetics. We also use our technique to construct upper bounds
for functionals that appear in a variational formulation of
the method of vanishing viscosity for conservation laws.
Download Results (CSV)