A class of convolutors on harmonic extensions of -type groups.
Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.
We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.
Let H₁ be the 3-dimensional Heisenberg group. We prove that a modified version of the spherical transform is an isomorphism between the space 𝓢ₘ(H₁) of Schwartz functions of type m and the space 𝓢(Σₘ) consisting of restrictions of Schwartz functions on ℝ² to a subset Σₘ of the Heisenberg fan with |m| of the half-lines removed. This result is then applied to study the case of general Schwartz functions on H₁.
Page 1