Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces
Francesca Astengo[1]; Bianca Di Blasio[2]
- [1] Dipartimento di Matematica Via Dodecaneso 35 16146 Genova Italy
- [2] Dipartimento di Matematica e Applicazioni Via Cozzi 53 20125 Milano Italy
Annales mathématiques Blaise Pascal (2010)
- Volume: 17, Issue: 2, page 327-340
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topAstengo, Francesca, and Di Blasio, Bianca. "Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces." Annales mathématiques Blaise Pascal 17.2 (2010): 327-340. <http://eudml.org/doc/116355>.
@article{Astengo2010,
abstract = {We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.},
affiliation = {Dipartimento di Matematica Via Dodecaneso 35 16146 Genova Italy; Dipartimento di Matematica e Applicazioni Via Cozzi 53 20125 Milano Italy},
author = {Astengo, Francesca, Di Blasio, Bianca},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Wave equation; Damek–Ricci space; Huygens' principle; wave equation; Damek-Ricci space; equipartition of energy; Paley-Wiener type theorem; Helgason Fourier transform},
language = {eng},
month = {7},
number = {2},
pages = {327-340},
publisher = {Annales mathématiques Blaise Pascal},
title = {Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces},
url = {http://eudml.org/doc/116355},
volume = {17},
year = {2010},
}
TY - JOUR
AU - Astengo, Francesca
AU - Di Blasio, Bianca
TI - Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces
JO - Annales mathématiques Blaise Pascal
DA - 2010/7//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 2
SP - 327
EP - 340
AB - We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.
LA - eng
KW - Wave equation; Damek–Ricci space; Huygens' principle; wave equation; Damek-Ricci space; equipartition of energy; Paley-Wiener type theorem; Helgason Fourier transform
UR - http://eudml.org/doc/116355
ER -
References
top- N. B. Andersen, Real Paley–Wiener theorem for the inverse Fourier transform on a Riemannian symmetric space, Pacific J. Math. 213 (2004), 1-13 Zbl1049.43004MR2040247
- J. Ph. Anker, E. Damek, C. Yacoub, Spherical analysis on harmonic groups, Ann. Scuola Norm. Sup. Pisa 23 (1996), 643-679 Zbl0881.22008MR1469569
- F. Astengo, B. Di Blasio, A Paley-Wiener theorem on harmonic spaces, Colloq. Math. 80 (1999), 211-233 Zbl0938.43003MR1703838
- F. Astengo, B. Di Blasio, Some properties of horocycles on Damek–Ricci spaces, Diff. Geo. Appl. 26 (2008), 676-682 Zbl1156.43004MR2474430
- F. Astengo, R. Camporesi, B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Austral. Math. Soc. 55 (1997), 405-424 Zbl0894.43003MR1456271
- F. Ayadi, Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian, J. Lie Theory 18 (2008), 747-755 Zbl1171.35421MR2523134
- S. Ben Saïd, Huygens’ principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators, Math. Res. Lett. 13 (2006), 43-58 Zbl1088.39018MR2199565
- T. Branson, G. Ólafsson, A. Pasquale, The Paley-Wiener Theorem for the Jacobi transform and the local Huygens’ principle for root systems with even multiplicities, Indag. Mathem. 16 (2005), 429-442 Zbl1168.43302MR2313632
- T. Branson, G. Ólafsson, H. Schlichtkrull, Huygens’ principle in Riemannian symmetric spaces, Math. Ann. 301 (1995), 445-462 Zbl0822.43002MR1324519
- M. Cowling, A. H. Dooley, A. Korányi, F. Ricci, -type groups and Iwasawa decompositions, Adv. Math. 87 (1991), 1-41 Zbl0761.22010MR1102963
- E. Damek, The geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math. 53 (1987), 255-268 Zbl0661.53033MR924070
- E. Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. 53 (1987), 239-247 Zbl0661.53035MR924068
- E. Damek, F. Ricci, Harmonic analysis on solvable extensions of –type groups, J. Geom. Anal. 2 (1992), 213-248 Zbl0788.43008MR1164603
- J. El Kamel, C. Yacoub, Huygens’ priciple and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian, Ann. Math. Blaise Pascal 12 (2005), 147-160 Zbl1088.35036MR2126445
- J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (1923), Yale University Press, New Haven Zbl49.0725.04
- S. Helgason, Geometric Analysis on Symmetric Spaces, (1994), American Mathematical Society, Providence RI Zbl0809.53057MR1280714
- A. Kaplan, Fundamental solution for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153 Zbl0393.35015MR554324
- M. Noguchi, The Solution of the Shifted Wave equation on Damek–Ricci Space, Interdiscip. Inform. Sci. 8 (2002), 101-113 Zbl1018.43008MR1923488
- M. E. Taylor, Partial Differential Equations, (1996), Springer-Verlag, New York Zbl0869.35001MR1395147
- S. Thangavelu, On Paley–Wiener and Hardy theorems for groups, Math. Z. 245 (2003), 483-502 Zbl1045.22008MR2021567
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.