Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces

Francesca Astengo[1]; Bianca Di Blasio[2]

  • [1] Dipartimento di Matematica Via Dodecaneso 35 16146 Genova Italy
  • [2] Dipartimento di Matematica e Applicazioni Via Cozzi 53 20125 Milano Italy

Annales mathématiques Blaise Pascal (2010)

  • Volume: 17, Issue: 2, page 327-340
  • ISSN: 1259-1734

Abstract

top
We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.

How to cite

top

Astengo, Francesca, and Di Blasio, Bianca. "Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces." Annales mathématiques Blaise Pascal 17.2 (2010): 327-340. <http://eudml.org/doc/116355>.

@article{Astengo2010,
abstract = {We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.},
affiliation = {Dipartimento di Matematica Via Dodecaneso 35 16146 Genova Italy; Dipartimento di Matematica e Applicazioni Via Cozzi 53 20125 Milano Italy},
author = {Astengo, Francesca, Di Blasio, Bianca},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Wave equation; Damek–Ricci space; Huygens' principle; wave equation; Damek-Ricci space; equipartition of energy; Paley-Wiener type theorem; Helgason Fourier transform},
language = {eng},
month = {7},
number = {2},
pages = {327-340},
publisher = {Annales mathématiques Blaise Pascal},
title = {Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces},
url = {http://eudml.org/doc/116355},
volume = {17},
year = {2010},
}

TY - JOUR
AU - Astengo, Francesca
AU - Di Blasio, Bianca
TI - Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces
JO - Annales mathématiques Blaise Pascal
DA - 2010/7//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 2
SP - 327
EP - 340
AB - We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.
LA - eng
KW - Wave equation; Damek–Ricci space; Huygens' principle; wave equation; Damek-Ricci space; equipartition of energy; Paley-Wiener type theorem; Helgason Fourier transform
UR - http://eudml.org/doc/116355
ER -

References

top
  1. N. B. Andersen, Real Paley–Wiener theorem for the inverse Fourier transform on a Riemannian symmetric space, Pacific J. Math. 213 (2004), 1-13 Zbl1049.43004MR2040247
  2. J. Ph. Anker, E. Damek, C. Yacoub, Spherical analysis on harmonic A N groups, Ann. Scuola Norm. Sup. Pisa 23 (1996), 643-679 Zbl0881.22008MR1469569
  3. F. Astengo, B. Di Blasio, A Paley-Wiener theorem on N A harmonic spaces, Colloq. Math. 80 (1999), 211-233 Zbl0938.43003MR1703838
  4. F. Astengo, B. Di Blasio, Some properties of horocycles on Damek–Ricci spaces, Diff. Geo. Appl. 26 (2008), 676-682 Zbl1156.43004MR2474430
  5. F. Astengo, R. Camporesi, B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Austral. Math. Soc. 55 (1997), 405-424 Zbl0894.43003MR1456271
  6. F. Ayadi, Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian, J. Lie Theory 18 (2008), 747-755 Zbl1171.35421MR2523134
  7. S. Ben Saïd, Huygens’ principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators, Math. Res. Lett. 13 (2006), 43-58 Zbl1088.39018MR2199565
  8. T. Branson, G. Ólafsson, A. Pasquale, The Paley-Wiener Theorem for the Jacobi transform and the local Huygens’ principle for root systems with even multiplicities, Indag. Mathem. 16 (2005), 429-442 Zbl1168.43302MR2313632
  9. T. Branson, G. Ólafsson, H. Schlichtkrull, Huygens’ principle in Riemannian symmetric spaces, Math. Ann. 301 (1995), 445-462 Zbl0822.43002MR1324519
  10. M. Cowling, A. H. Dooley, A. Korányi, F. Ricci, H -type groups and Iwasawa decompositions, Adv. Math. 87 (1991), 1-41 Zbl0761.22010MR1102963
  11. E. Damek, The geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math. 53 (1987), 255-268 Zbl0661.53033MR924070
  12. E. Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. 53 (1987), 239-247 Zbl0661.53035MR924068
  13. E. Damek, F. Ricci, Harmonic analysis on solvable extensions of H –type groups, J. Geom. Anal. 2 (1992), 213-248 Zbl0788.43008MR1164603
  14. J. El Kamel, C. Yacoub, Huygens’ priciple and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian, Ann. Math. Blaise Pascal 12 (2005), 147-160 Zbl1088.35036MR2126445
  15. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (1923), Yale University Press, New Haven Zbl49.0725.04
  16. S. Helgason, Geometric Analysis on Symmetric Spaces, (1994), American Mathematical Society, Providence RI Zbl0809.53057MR1280714
  17. A. Kaplan, Fundamental solution for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153 Zbl0393.35015MR554324
  18. M. Noguchi, The Solution of the Shifted Wave equation on Damek–Ricci Space, Interdiscip. Inform. Sci. 8 (2002), 101-113 Zbl1018.43008MR1923488
  19. M. E. Taylor, Partial Differential Equations, (1996), Springer-Verlag, New York Zbl0869.35001MR1395147
  20. S. Thangavelu, On Paley–Wiener and Hardy theorems for N A groups, Math. Z. 245 (2003), 483-502 Zbl1045.22008MR2021567

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.