A Paley-Wiener theorem on NA harmonic spaces
Francesca Astengo; Bianca di Blasio
Colloquium Mathematicae (1999)
- Volume: 80, Issue: 2, page 211-233
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topAstengo, Francesca, and di Blasio, Bianca. "A Paley-Wiener theorem on NA harmonic spaces." Colloquium Mathematicae 80.2 (1999): 211-233. <http://eudml.org/doc/210713>.
@article{Astengo1999,
abstract = {Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.},
author = {Astengo, Francesca, di Blasio, Bianca},
journal = {Colloquium Mathematicae},
keywords = {nilpotent Lie group; Paley-Wiener type theorem; Helgason-Fourier transform},
language = {eng},
number = {2},
pages = {211-233},
title = {A Paley-Wiener theorem on NA harmonic spaces},
url = {http://eudml.org/doc/210713},
volume = {80},
year = {1999},
}
TY - JOUR
AU - Astengo, Francesca
AU - di Blasio, Bianca
TI - A Paley-Wiener theorem on NA harmonic spaces
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 2
SP - 211
EP - 233
AB - Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.
LA - eng
KW - nilpotent Lie group; Paley-Wiener type theorem; Helgason-Fourier transform
UR - http://eudml.org/doc/210713
ER -
References
top- [ADY] J.-P. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa 33 (1996), 643-679. Zbl0881.22008
- [ACD] F. Astengo, R. Camporesi and B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Austral. Math. Soc. 55 (1997), 405-424. Zbl0894.43003
- M. Cowling, A. H. Dooley, A. Korányi and F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., to appear. Zbl0966.53039
- [CH] M. G. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507-549. Zbl0681.43012
- [Da1] E. Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. 53 (1987), 239-247. Zbl0661.53035
- [Da2] E. Damek, Curvature of a semidirect extension of a Heisenberg type nilpotent group, ibid., 249-253.
- [Da3] E. Damek, Geometry of a semidirect extension of a Heisenberg type nilpotent group, ibid., 255-268.
- E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248. Zbl0788.43008
- E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. 27 (1992), 139-142. Zbl0755.53032
- [Di] B. Di Blasio, Paley-Wiener type theorems on harmonic extensions of H-type groups, Monatsh. Math. 123 (1997), 21-42. Zbl0887.43001
- [DoZ] A. Dooley and G. Zhang, Spherical functions on H-type groups, preprint.
- [EbO] P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109.
- A. Erdélyi, W. Magnus, F. Oberhettinger and G. Tricomi, Higher Transcendental Functions, Vols. I, II, McGraw-Hill, New York, 1953. Zbl0051.30303
- [F] J. Faraut, Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un, J. Funct. Anal. 49 (1982), 230-268. Zbl0526.43005
- [GV] R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergeb. Math. Grenzgeb. 101, Springer, Berlin and New York, 1988. Zbl0675.43004
- [HC] Harish-Chandra, Discrete series for semisimple Lie groups, Acta Math. 116 (1966), 1-111. Zbl0199.20102
- [He] S. Helgason, Geometric Analysis on Symmetric Spaces, Math. Surveys Monographs 39, Amer. Math. Soc., Providence, R.I., 1994.
- [H] A. Hulanicki, Subalgebra of associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. Zbl0316.43005
- [HR] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in , Invent. Math. 62 (1980), 325-331. Zbl0449.31008
- [Ka1] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153.
- [Ka2] A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981), 127-136. Zbl0495.53046
- [Ko1] A. Korányi, Some applications of Gelfand pairs in classical analysis, in: Harmonic Analysis and Group Representations, C.I.M.E., Liguori, Napoli, 1980, 333-348.
- [Ko2] A. Korányi, Geometric properties of Heisenberg type groups, Adv. Math. 56 (1985), 28-38. Zbl0589.53053
- [Ri1] F. Ricci, Harmonic analysis on groups of type H, preprint.
- [Ri2] F. Ricci, The spherical transform on harmonic extensions of H-type groups, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 381-392. Zbl0829.43021
- [RWW] H. S. Ruse, A. G. Walker and T. J. Willmore, Harmonic Spaces, Edizioni Cremonese, Roma, 1961.
- [V] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math. 576, Springer, Berlin, 1977. Zbl0354.43001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.