The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring of an integral domain is called a maximal non valuation domain in if is not a valuation subring of , and for any ring such that , is a valuation subring of . For a local domain , the equivalence of an integrally closed maximal non VD in and a maximal non local subring of is established. The relation between and the number...
Let be a commutative ring with identity. If a ring is contained in an arbitrary union of rings, then is contained in one of them under various conditions. Similarly, if an arbitrary intersection of rings is contained in , then contains one of them under various conditions.
Let be a commutative ring with unity. The notion of maximal non -subrings is introduced and studied. A ring is called a maximal non -subring of a ring if is not a -extension, and for any ring such that , is a -extension. We show that a maximal non -subring of a field has at most two maximal ideals, and exactly two if is integrally closed in the given field. A determination of when the classical construction is a maximal non -domain is given. A necessary condition is given...
Download Results (CSV)