The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove superdiffusivity with multiplicative logarithmic corrections for a class of models of random walks and diffusions with long memory. The family of models includes the “true” (or “myopic”) self-avoiding random walk, self-repelling Durrett-Rogers polymer model and diffusion in the curl-field of (mollified) massless free Gaussian field in 2D. We adapt methods developed in the context of bulk diffusion of ASEP by Landim-Quastel-Salmhofer-Yau (2004).
We introduce and investigate a new model of a finite number of particles jumping forward on the real line. The jump lengths are independent of everything, but the jump rate of each particle depends on the relative position of the particle compared to the center of mass of the system. The rates are higher for those left behind, and lower for those ahead of the center of mass, providing an attractive interaction keeping the particles together. We prove that in the fluid limit, as the number of particles...
Download Results (CSV)