The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Nombres de Bell et somme de factorielles

Daniel BarskyBénali Benzaghou — 2004

Journal de Théorie des Nombres de Bordeaux

Dj. Kurepa a conjecturé que pour tout nombre premier impair, p , la somme n = 0 p - 1 n ! n’est pas divisible par p . Cette somme est reliée aux nombres de Bell qui apparaissent en combinatoire énumérative. Nous donnons une expression du n -ième nombre de Bell modulo p comme la trace de la puissance n -ième d’un élément fixe dans l’extension d’Artin-Schreier de degré p du corps premier à p éléments. Cette expression permet de démontrer la conjecture de Kurepa en la ramenant à un problème d’algèbre linéaire.

Page 1

Download Results (CSV)