The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We establish a decomposition of non-negative Radon measures on which extends that obtained by Strichartz [6] in the setting of -dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.
Let d be a positive integer and μ a generalized Cantor measure satisfying , where , , with 0 < ρ < 1 and R an orthogonal transformation of . Then
⎧1 < p ≤ 2 ⇒
⎨, ,
⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’where , α’ is defined by and the constants D₁ and D₂ depend only on d and p.
Let be a locally compact group and the left Haar measure on . Given a non-negative Radon measure , we establish a necessary condition on the pairs for which is a multiplier from to . Applied to , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].
When is the circle...
Download Results (CSV)